许多场合,开始时不知道要编码数据的统计特性,也不一定允许你事先知道它们的统计特性。因此,人们提出了许许多多的数据压缩方法,企图用来对这些数据进行压缩编码,在实际编码过程中以尽可能获得最大的压缩比。这些技术统称为通用编码技术。 字典编码(dictionary encoding)技术(以下简称DE)就是属于这一类,这种技术属于无损压缩技术。
1994 年,Michael Burrows 和 David Wheeler 发明了Burrows-Wheeler Transform算法,并以他们的姓名命名。在读《Universal losslessdata compression algorithm》的时候,我也深刻体会到了文中对该算法精确的描述,以至于一半以上的内容都是讲它以及如何改进优化BWT的。
K-SVD可以看做K-means的一种泛化形式,K-means算法总每个信号量只能用一个原子来近似表示,而K-SVD中每个信号是用多个原子的线性组合来表示的。 K-SVD算法总体来说可以分成两步,首先给定一个初始字典,对信号进行稀疏表示,得到系数矩阵。第二步根据得到的系数矩阵和观测向量来不断更新字典。 设D∈R n×K,包含了K个信号原子列向量的原型{dj}j=1K,y∈R n的信号可以表示成为这些原子的稀疏线性结合。也就是说y=Dx,其中x∈RK表示信号y的稀疏系数。论文中采用的是2范数来计算误差。
《E往无前》系列将着重展现腾讯云大数据ES在持续深入优化客户所关心的「省!快!稳!」诉求,能够在低成本的同时兼顾高可用、高性能、高稳定等特性,可以满足微盟、小红书、微信支付等内外部大客户的核心场景需求。 E往无前 | 日志成本下降25%+!腾讯云大数据ES Lucene压缩编码深度优化大揭秘 导语:Lucene作为Elasticsearch的底层索引引擎,提供了灵活的数据检索能力。但在日志数据领域,Lucene现有的设计导致数据膨胀较为严重,本文介绍了关于Lucene底层文件格式的系统性优化思路。这些优化特
Hashids是一个非常小巧的跨语言的开源库,它用来把数字编码成一个随机字符串。它不同于md5这种算法这种单向映射,Hashids除了编码还会解码。
数据压缩是保留相同或绝大部分数据前提下减小文件大小的过程。它的原理是消除不必要的数据或以更高效的格式重新组织数据。在进行数据压缩时,你可以选择使用有损方法或无损方法。有损方法会永久性地擦除掉一些数据,而无损方法则能保证持有全部的数据。使用哪类方法取决于你要让你的文件保持多大的精准度。
最近工作正好接触到这一块,试着自己总结了一下,给需要的人提供一点帮助。 一、概述 首先看看百度百科里的一句话介绍:“LZW就是通过建立一个字符串表,用较短的代码来表示较长的字符串来实现压缩。” 简单来说,就是尝试用短的编码代替长的编码达到压缩的目的。LZW其实是三个大牛的名字,这个算法最开始是 Ziv和Lempel这两个人在1977,1978年发明的,在1984年的时候由另一位大牛Terry Welch进行了改进,所以这个算法的名字才叫LZW。它的一个最为人所占的应用是在gif压缩里面的使用。
此部分包含第15、16、17和18章,包含了计算机中传输的数据压缩(有损与无损)、网络数据在传输过程中如何保证其数据安全, 讨论计算理论,即哪些是可计算的,哪些是不可计算的,最后介绍当前热门的人工智能(AI)的观点,加深我们对计算机数据处理的的认识,为后续学习扩展基础认识。
炎热的暑假过后,就是新一轮的春招了,甚至很多公司都已经开始了提前批招聘。在正式进入职场之前,找一份实习来提升自己对工作,对岗位的熟悉程度也是非常有必要的。今天我们就来爬取一下实习僧的岗位招聘数据吧!
看过很多压缩相关的技术文章,大家都在讲各种压缩算法的技术实现原理及各压缩算法之间的压缩率的对比,哪个压缩算法好等等。这些技术文章非常好,可以指引我们在技术上不断钻研。本文将从另外一个大家讲的还比较少的角度,和大家一起探讨下如何在产品中使用好压缩算法。
LZW编码通过建立一个字符串表,用较短的代码来表示较长的字符串来实现压缩。 LZW压缩算法是Unisys的专利,有效期到2003年,所以相关算法大多也已过期。
论文链接:http://proceedings.mlr.press/v80/wang18k.html
大家好,又见面了,我是你们的朋友全栈君。列存储,作为一种针对数据查询和数据分析设计的数据存储策略,在“大数据”越来越普及的今天可以说是相当地火热。相较于行存储,列存储的最大优势有二,其一就是查询涉及到数据库的哪几个列就读哪几个列,不读一点与查询不相关的列,大大减少了数据的读取,其二就是数据库数据分为多个独立的列来存储,相同数据类型的数据连续存储在一起,易于数据压缩,而这再次减少了数据的读取。以上正是列存储在处理数据查询和数据分析方面的天然优势,其中也有很多值得探讨的东西。关于前者,本博主涉其未深,不便胡说,倒是近日通过阅读些许文章晓得了几种列存中的数据压缩算法,可以写出来与众看客们分享一二三点。
gzip,zlib,以及图形格式png,使用的是同一个压缩算法deflate。我们通过对gzip源码的分析来对deflate压缩算法做一个详细的说明:
给定一段文字,已知单词a1, a2, …, an出现的频率分别t1, t2, …, tn。可以用01串给这些单词编码,即将每个单词与一个01串对应,使得任何一个单词的编码(对应的01串)不是另一个单词编码的前缀,这种编码称为前缀码。 使用前缀码编码一段文字是指将这段文字中的每个单词依次对应到其编码。一段文字经过前缀编码后的长度为: L=a1的编码长度×t1+a2的编码长度×t2+…+ an的编码长度×tn。 定义一个前缀编码为字典序编码,指对于1 ≤ i < n,ai的编码(对应的01串)的字典序在ai+1编码之前,即a1, a2, …, an的编码是按字典序升序排列的。 例如,文字E A E C D E B C C E C B D B E中, 5个单词A、B、C、D、E出现的频率分别为1, 3, 4, 2, 5,则一种可行的编码方案是A:000, B:001, C:01, D:10, E:11,对应的编码后的01串为1100011011011001010111010011000111,对应的长度L为3×1+3×3+2×4+2×2+2×5=34。 在这个例子中,如果使用哈夫曼(Huffman)编码,对应的编码方案是A:000, B:01, C:10, D:001, E:11,虽然最终文字编码后的总长度只有33,但是这个编码不满足字典序编码的性质,比如C的编码的字典序不在D的编码之前。 在这个例子中,有些人可能会想的另一个字典序编码是A:000, B:001, C:010, D:011, E:1,编码后的文字长度为35。 请找出一个字典序编码,使得文字经过编码后的长度L最小。在输出时,你只需要输出最小的长度L,而不需要输出具体的方案。在上面的例子中,最小的长度L为34。
自从Deep Learning之风盛起之时到现在,江湖上诞生了很多都可以从无标签数据中学习到深度的分级的特征的算法。大部分情况,这些算法都涉及到一个多层网络,而训练和调整这个网络需要很多tricks。最近,我们发现K-means聚类算法也可以被作为一个非常快的训练方法。它的优点是快!容易实现!当然了,K-means也不是万能神丹,它也存在自身的局限性。在本文中,我们就关注K-means的方方面面。总结了最近的K-means算法的效果和介绍使用k-means来有效地学习图像的特征的一些技巧。 一、
自从Deep Learning之风盛起之时到现在,江湖上诞生了很多都可以从无标签数据中学习到深度的分级的特征的算法。大部分情况,这些算法都涉及到一个多层网络,而训练和调整这个网络需要很多tricks。最近,我们发现K-means聚类算法也可以被作为一个非常快的训练方法。它的优点是快!容易实现!当然了,K-means也不是万能神丹,它也存在自身的局限性。在本文中,我们就关注K-means的方方面面。总结了最近的K-means算法的效果和介绍使用k-means来有效地学习图像的特征的一些技巧。 一
ChatGPT最强竞对Claude背后的公司Anthropic,利用字典学习成功将大约500个神经元分解成了约4000个可解释特征。
邻域嵌入(Neighbor Embedding, NE)是“样本-样本”映射,在训练样本中寻找测试样本的相似邻居特征样本,计算量略大。
面对快速增长的在线数据,尤其在例如订单、交易、日志等场景,数据往往多呈现为流水型特征,写入一段时间后即不会再次访问或更新;对访问频率很低甚至为0的数据,其占用的在线业务库固态存储空间,造成了大量硬件资源浪费,堆高企业的IT成本。同时,传统数据归档方案往往是业务研发或 DBA 采用脚本或简单的同步工具进行,难以在并发和效率上有效控制,很容易对在线数据库产生影响,严重的甚至导致生产数据误删事故。
目前为止,我们介绍了 redis 中非常典型的五种数据结构,从 SDS 到 压缩列表,这都是 redis 最底层、最常用的数据结构,相信你也掌握的不错。
HTTP2的优点我们后面会一一列出,但是一个新的东西的升级必须要做到向前兼容才能快速推广,因为只有这样才能减少对用户的影响。
MISIS大学信息技术和计算机科学系副教授,博士,数学家和博士Alexandra Bernadotte优化了算法,显著提高了机器人设备对心理命令的识别精度。这是通过优化字典的选择来实现的。在机器人设备中实现的算法可用于通过噪声通信信道传输信息。研究结果发表在同行评议的国际科学杂志《数学》上。
前面两篇博客,第一篇介绍了五大数据类型的基本用法,第二篇介绍了Redis底层的六种数据结构。在Redis中,并没有直接使用这些数据结构来实现键值对数据库,而是基于这些数据结构创建了一个对象系统,这些对象系统也就是前面说的五大数据类型,每一种数据类型都至少用到了一种数据结构。通过这五种不同类型的对象,Redis可以在执行命令之前,根据对象的类型判断一个对象是否可以执行给定的命令,而且可以针对不同的场景,为对象设置多种不同的数据结构,从而优化对象在不同场景下的使用效率。
上一期介绍了Base128编码,这次谈谈Base128的实现——Zipack。以下内容是我Zipack格式的中文规范,其中最精彩的部分在“变长浮点数”的部分。
文本是由多种词性的字词通过系统的语法规则组成而成的 具有上下文语义的字词串。根据文本的定义,我们可以将文本的相似度分为两种:一,是文本包含字词的相似度;二,是文本内含语义的相似度。
项目地址:https://github.com/GokuMohandas/practicalAI
根据PDF官方指南,理解PDF格式可以从四个方面下手——Objects(对象)、File structure(物理文件结构)、Document structure(逻辑文件结构)、Content streams(内容流)。
模型开发人员只能决定算法、数据,最后得到模型的输出结果,而中间部分——模型是怎么根据这些算法和数据输出结果,就成为了不可见的「黑箱」。
存储引擎是一个图数据库的核心组件,它负责数据在磁盘中的存储和检索。对于处理大量节点和边的场景,以下存储引擎可以考虑使用:
摩斯密码是一种将文本信息作为一系列通断的音调、灯光或咔嗒声传输的方法,无需特殊设备,熟记的小伙伴即可直接翻译。它以电报发明者Samuel F. B. Morse的名字命名。
除了上面这些压缩格式,像.jpg,.mp3,.avi这些,也都是有着压缩的作用,只不过跟上面.zip这些相比,它们执行的是有损压缩
Uber最近发布了如何使用压缩日志处理器(CLP)大幅降低日志记录成本的发布。CLP 是一种能够无损压缩文本日志并在不解压缩的情况下搜索它们的工具。它实现了 Uber 日志数据 169 倍的压缩率,节省了存储、内存和磁盘/网络带宽。
在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差。一个消除误差有效的办法是进行回环检测。回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理。回环是一个比后端更加紧凑、准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图。如果能够检测到闭环,并对其优化,就可以让结果更加准确。
2.5. 分解成分中的信号(矩阵分解问题) 2.5.1. 主成分分析(PCA) 2.5.1.1. 准确的PCA和概率解释(Exact PCA and probabilistic interpretation) PCA 用于对一组连续正交分量中的多变量数据集进行方差最大方向的分解。 在 scikit-learn 中, PCA 被实现为一个变换对象, 通过 fit 方法可以降维成 n 个成分, 并且可以将新的数据投影(project, 亦可理解为分解)到这些成分中。 可选参数 whiten=Tr
由上海交通大学发表于2020 Robotics and Autonomous Systems
文章:FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
hashlib Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。 摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。 以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib md5 = hashlib.md5() src = "how to use python hashlib -zhdya" md5.update(src.encode("utf-8")) print(m
什么是Brotli压缩?【文章来源:https://www.zouaw.com/4358.html】
分割原始图像为若干个\sqrt{n} \times \sqrt{n}的块. 这些图像块就是样本集合中的单个样本y = \mathbb{R}^n. 在固定的字典上稀疏分解y后,得到一个稀疏向量. 将所有的样本进行表征一户,可得原始图像的稀疏矩阵. 重建样本y = \mathbb{R}^n时,通过原子集合即字典\mathrm{D} = \{d_i\}^k_{i=1} \in \mathbb{R}^{n \times m} (n < m)中少量元素进行线性组合即可:
药物相互作用(DDI)是指病人在同时服用两种或两种以上的药物时,一种药物的药效受到另一种药物、食物或者环境的影响而发生改变,从而导致药效下降,或是药效增强导致明显毒副作用。例如,乙酰水杨酸(俗称:阿司匹林)本身具有抗炎解热、抑制血小板聚集、预防血栓和心肌梗塞的作用,但是当它与1-苄基咪唑相结合时会使高血压的风险增加。所以,对于药物相互作用的预测研究是有重要意义的,不仅能够减少非预期药物相互作用的情况,还能降低药物开发成本,以及优化药物设计过程。
本文对北京理工大学、阿里文娱摩酷实验室合作的论文《RevisitingBilinear Pooling: A coding Perspective》进行解读,该论文发表在AAAI 2020,本文首先证明了常用的特征融合方法——双线性池化是一种编码-池化的形式。从编码的角度,我们提出了分解的双线性编码来融合特征。与原始的双线性池化相比,我们的方法可以生成更加紧致和判别的表示。
某些情况下(例如用户扫码支付成功时),支付宝会给商户系统发送异步通知。在发送异步通知时,支付宝会对通知参数进行签名,并将 “签名字符串 sign” 作为通知参数发送给商户系统。支付宝签名的步骤是:
如果人工智能比作一块蛋糕,那么蛋糕的大部分是自监督学习,蛋糕上的糖衣是监督学习,蛋糕上的樱桃是强化学习。
点击关注公众号,Java干货及时送达 近日,国际电气与电子工程学会(Institute of Electrical and Electronics Engineers,简称 IEEE)宣布,授予 IEEE 终身 Fellow Jacob Ziv 2021 年度 IEEE 荣誉勋章。 Jacob Ziv 这位如今已 90 岁的前辈,是一位以色列科学家,他开发了通用无损压缩算法 Lempel-Ziv,为后来的 GIF、PNG 和 ZIP 文件的开发奠定了坚实的基础。 1、无损压缩算法发展史 20 世纪 70
我们提出了无监督视觉表征学习的动量对比(MoCo)。从作为字典查找的对比学习[29]的角度来看,我们构建了具有队列和移动平均编码器的动态字典。这使得能够动态构建一个大型且一致的词典,从而促进对比无监督学习。MoCo在ImageNet分类的通用线性协议下提供了有竞争力的结果。更重要的是,MoCo了解到的情况很好地转移到了下游任务中。在PASCAL VOC、COCO和其他数据集上,MoCo在7项检测/分割任务中的表现优于其监督的预训练对手,有时甚至远远超过它。这表明,在许多视觉任务中,无监督和有监督表示学习之间的差距已经基本消除。
领取专属 10元无门槛券
手把手带您无忧上云