磐创AI分享 作者 | June Tao Ching 编译 | VK 来源 | Towards Data Science 数据清理是任何项目中最关键的一步,如果处理不当,可能会得出完全不同的结论...此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。在处理它们之前,我们必须用null替换它们。...解决方案1:删除样本(行)/特征(列) 如果我们确信丢失的数据是无用的,或者丢失的数据只是数据的一小部分,那么我们可以删除包含丢失值的行。 在统计学中,这种方法称为删除,它是一种处理缺失数据的方法。...在该方法中,如果缺少任何单个值,则整个记录将从分析中排除。 如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。...现在你已经学会了如何用pandas清理Python中的数据。我希望这篇文章对你有用。如果我有任何错误或打字错误,请给我留言。
可以指定行索引和列索引,但是如果指定了字典键以外的列索引,会被置为NaN print(pd.DataFrame(data, index=['index1', 'index2'])) print(pd.DataFrame...DataFrame的数据处理 3.1列的处理 以2.5中创建的DataFrame为例: 读取一列 df = pd.DataFrame(d) print(df["one"]) 结果: a 1.0...3 d NaN 4 3.2 行的处理 标签选择 可以将行标签传递给loc来选择行: print(df.loc["b"]) 结果 one 2.0 two 2.0 Name: b, dtype...删除行 drop()函数可以来删除行(或者列): 以下函数等价: df.drop(['b', 'c'], axis=1) df.drop(columns=['b', 'c']) 以下函数等价: df.drop...4 新建行 使用append()函数可以新建行。
那期教程中,我们介绍过在Dash中创建静态表格的方法。...= sns.load_dataset('iris') # 创建行下标列 df.insert(loc=0, column='#', value=df.index) app.layout = html.Div...= sns.load_dataset('iris') # 创建行下标列 df.insert(loc=0, column='#', value=df.index) app.layout = html.Div...= sns.load_dataset('iris') # 创建行下标列 df.insert(loc=0, column='#', value=df.index) app.layout = html.Div...('iris') # 创建行下标列 df.insert(loc=0, column='#', value=df.index) app.layout = html.Div( dbc.Container
此外,如果用一个数值乘以某个向量,例如,则得到图1-2-3所示: ? 1-2-3 所得到的向量与原来的向量方向相同,但长度是原来的倍。...★设:向量,,,标量,,则: (加法交换律) (加法结合律) ” 特别注意,不是标量,而是指元素都是的向量,称为零向量,例如中的,即坐标系原点。...此外,也可以写成一行,如,那样,称为行向量。有时为了书写方便,会把列向量写成,T表示转置。 实现与应用 在程序中,创建行向量或者列向量,一般以NumPy数组实现。...如果要创建列向量,可以这样操作: v = u.reshape(-1,1) v 输出: array([[1], [6], [7]]) 此外,在Pandas的DataFrame对象中...1-2-6 还可以用DataFrame对象表示向量化结果: import pandas as pd df = pd.DataFrame(cor_vec.toarray(), columns=vectorizer.get_feature_names
2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。如果您事先知道列名,则比以后删除更好。...df.loc [missing_index,['Balance','Geography']] = np.nan Balance和Geography列中缺少20个值。...“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。 df.dropna(axis=0, how='any', inplace=True) axis = 1用于删除缺少值的列。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...如果要将新列放在特定位置,则可以使用插入函数。 df_new.insert(0, 'Group', group) df_new ?
这些是Pandas可以检测到的缺失值。 回到我们的原始数据集,让我们看一下“ ST_NUM”列。 ? 第三列中有一个空单元格。在第七行中,有一个“ NA”值。 显然,这些都是缺失值。...Pandas会将空单元格和“NA”类型都识别为缺失值。下面,我将介绍一些Pandas无法识别的类型。 非标准缺失值 有时可能是缺少具有不同格式的值的情况。...如果有多个用户手动输入数据,则这是一个常见问题。也许我喜欢使用“n / a”,但是其他人喜欢使用“ na”。 检测这些各种格式的一种简单方法是将它们放在列表中。...从前面的示例中,我们知道Pandas将检测到第7行中的空单元格为缺失值。让我们用一些代码进行确认。...int(row) 如果可以将值更改为整数,则可以使用Numpy's将条目更改为缺少的值。np.nan 另一方面,如果不能将其更改为整数,我们pass将继续。
pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...当通过列表字典来创建 DataFrame 时,每个字典通常代表一行数据,字典的键(key)对应列名,而值(value)对应该行该列下的数据。如果每个字典中键的顺序不同,pandas 将如何处理呢?...缺失值处理:如果某些字典缺少某些键,则相应地,在结果 DataFrame 中该位置将被填充为 NaN(Not a Number),表示缺失值。...下面是对每一行代码的解释: import pandas as pd:这行代码导入了 pandas 库,并将其重命名为 pd。...在个别字典中缺少某些键对应的值,在生成的 DataFrame 中该位置被填补为 NaN。
在今天的文章中,我们将探讨如何配置所需的pandas选项,这些选项将使我们能够“漂亮地打印” pandas DataFrames。...仅显示一部分列(缺少第4列和第5列),而其余列以多行方式打印。 ? 尽管输出仍可读取,但绝对不建议保留列或将其打印在多行中。...如何在同一行打印所有列 现在,为了显示所有的列(如果你的显示器能够适合他们),并在短短一行所有你需要做的是设置显示选项expand_frame_repr为False: pd.set_option('expand_frame_repr...则输出将在多个“页面”中回绕。...如何打印所有行 现在,如果您的DataFrame包含的行数超过一定数目,那么将仅显示一些记录(来自df的头部和尾部): import pandas as pd import numpy as np
的数据类型为pandas.core.indexing,_LocIndexer, iloc的数据类型为pandas.core.indexing,_iLocIndexer, 用loc进行索引时,中括号[...]中的值必须是索引的真实值; 用iloc进行索引时,中括号[ ]中的值必须是整数,与列表list索引取值类似,例如obj.iloc[2]就是取第3行的值。...跟其他类似的数据结构相比(如R的dataframe), Data frame中面向行和面向列的操作基本上是平衡的。...image.png 4.Pandas快速进阶 4.1 DataFrame创建 创建行和列都为自定义值的DataFrame from pandas import DataFrame import numpy...image.png 4.4 DataFrame选出多行 选出第2、 3行,即选出索引为1、2的行,代码如下: 注意,df.iloc 不是方法,是类似于列表list的可迭代对象,所以后面必须接中括号[
(个人对比excel和pandas,的确pandas不会死机....)在他的演示中,我们可以看到读取489597行,6列的数据只要0.9s。 2.时间序列处理。经常用在金融应用中。 3.数据队列。...如果想一行一行的插入呢?...copy:如果默认值为False,则使用该命令(或其它)复制数据。...---- 行删: 使用索引标签从DataFrame中删除或删除行。...如果标签存在重复使用,则多行将被删除。
大多数 Pandas 用户都熟悉 iloc[] 和 loc[] 索引器方法,用于从 Pandas DataFrame 中检索行和列。...与 SQL 比较,则 query() 方法中的表达式类似于 SQL 中的 WHERE 语句。...(‘C’)出发的乘客,可以在 Pandas 中使用否定运算符 (~): df[~((df['Embarked'] == 'S') | (df['Embarked'] == 'C'))] 使用 query...,当应用于列名时,我们可以使用 isnull() 方法查找缺失值: df.query('Embarked.isnull()') 现在将显示 Embarked 列中缺少值的行: 其实可以直接在列名上调用各种...a dataframe 但是使用 query() 方法,使得事情变得更加直观: df.query('index==1') 结果如下 如果要检索索引值小于 5 的所有行: df.query('index
读取CSV和缺失值 如果我们的CSV文件中缺少数据存在缺失数据,我们可以使用参数na_values。 在下面的示例中有一些单元格的字符串为“Not Available”。...image.png 跳过行读取CSV 例如,我们如何跳过文件中的前三行,如下所示: ?...在下面的示例中,我们使用read_csv和skiprows = 3来跳过前3行。...Pandas read_csv跳过示例: df = pd.read_csv('Simdata/skiprow.csv', index_col=0, skiprows=3) df.head() ?...如何使用Pandas读取某些行 如果我们不想读取CSV文件中的每一行,我们可以使用参数nrows。 在下面的下一个示例中,我们读取了CSV文件的前8行。
df_1 = df.copy() df_2 = df.copy() 下面的代码将删除所有缺少值的行。...df_1.dropna(inplace=True) 如果您在Jupyter notebook中运行此操作,您将看到单元格没有输出。这是因为inplace=True函数不返回任何内容。...注意,这次我们将使用df_2版本的df df_2.dropna(inplace=False) ? 如果您在Jupyter notebook中运行此代码,您将看到有一个输出(上面的屏幕截图)。...如果您希望更新原始数据以反映已删除的行,则必须将结果重新分配到原始数据中,如下面的代码所示。...这样就可以将dataframe中删除第二个name和age列中值为空的行。
需要说明的是,在运行的过程可能会存在缺少 xlrd 和 openpyxl 包的情况,到时候如果缺少了,可以在命令行模式下使用“pip install”命令来进行安装。...如果使用 infer 参数,则使用 gzip、bz2、zip 或者解压文件名中以 ‘.gz’、‘.bz2’、‘.zip’ 或 ‘xz’ 这些为后缀的文件,否则不解压。...如果使用 zip,那么 ZIP 包中必须只包含一个文件。设置为 None 则不解压。...(2.1)删除 DataFrame 中的不必要的列或行 Pandas 提供了一个便捷的方法 drop() 函数来删除我们不想要的列或行 df2 = df2.drop(columns=['Chinese'...df2 = df2.drop(index=['ZhangFei']) (2.2)重命名列名 columns,让列表名更容易识别 如果你想对 DataFrame 中的 columns 进行重命名,可以直接使用
如果没有索引被传递,则默认为**np.arrange(n)** dtype: 设置数据类型 copy: 复制数据,默认为Flase 1)创建一个空的序列 import numpy as np...) """ 2)从ndarray创建一个序列: 如果数据是ndarray,则传递的索引必须具有相同的长度。...未给赋值时,也即缺少元素是,用NAN填充 data = {'a':0,'b':1,'c':2.} s= pd.Series(data, index=['b','a','c','d']) print(s...pandas.DataFrame( data, index, columns, dtype) data: 包含一维数组,列表对象, 或者是Series对象的字典对象 index :对于行标签,如果没有索引被传递...) df = df.append(df2) print(df) """ 输出: a b 0 1 2 1 3 4 0 5 6 1 7 8 """ 删除行: # 删除行 df = df.drop
Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...例如,如果 df1 具有3个键foo 值, 而 df2 具有2个相同键的值,则 在最终DataFrame中将有6个条目,其中 leftkey = foo 和 rightkey = foo。 ?...包括df2的所有元素, 仅当其键是df2的键时才 包含df1的元素 。 “outer”:包括来自DataFrames所有元素,即使密钥不存在于其他的-缺少的元素被标记为NaN的。...记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。如果不是,则“ join”和“ merge”在定义方面具有非常相似的含义。
如果调用combine_first()方法的df1中数据非空,则结果保留df1中的数据,如果df1中的数据为空值且传入combine_first()方法的df2中数据非空,则结果取df2中的数据,如果df1...和df2中的数据都为空值,则结果保留df1中的空值(空值有三种: np.nan、None 和 pd.NaT)。...fmax()是numpy中实现的函数,用于比较两个数组,返回一个新的数组。返回两个数组中相同索引的最大值,如果其中一个数组的值为空则返回非空的值,如果两个数组的值都为空则返回第一个数组的空值。...上面的例子中自定义了函数save_max(),合并时取同位置的最大值,原理如下图。 ? 五不处理缺少的列 ---- ?...overwrite: 如果调用combine()方法的DataFrame中存在的列,在传入combine()方法的DataFrame中不存在,则先在传入的DataFrame中添加一列空值。
,如果不安装最新版本,pandas里面会缺少一些库,导致你Python代码执行失败。...ps:在这个过程中,可能会遇到安装不顺利的情况,万能的度娘有N种解决方案,你这么大应该要学着自己解决问题。...print(df.values)读所有行 # print(df.ix[:].values)读所有的 # print(df.ix[1:1].values)它是从0开始数的 # print(df.ix[:...])读出来是矩阵形式 # print(df.ix[:,['url']].values)读指定行的指定列 # print(df.ix[:,['url','data']].values)指定多行 # print...注意:Pycharm中绝对路径和相对路径一定要搞清楚,不然会导致代码运行报错。 ----
领取专属 10元无门槛券
手把手带您无忧上云