此数据框架包括原始数据集中的所有列,我们可以将其作为一个独立的表(数据框架)使用,而不需要额外的步骤(例如,如果我们在Excel中进行筛选后,需要将其复制到另一个工作表或删除其他行以使其成为“一个表”)...如果不需要新数据框架中的所有列,只需将所需的列名传递到.loc[]中即可。例如,仅需要选择最新排名、公司名称和营业收入,我们可以执行以下操作。注意,它只返回我们指定的3列。...上面的代码行翻译为:对于每一行,如果“总部所在国家”是“中国”,则评估为Ture,否则为False。 为了更好地形象化这个思想,让我展示一下在Excel中它是什么样子。...当你将这个布尔索引传递到df.loc[]中时,它将只返回有真值的行(即,从Excel筛选中选择1),值为False的行将被删除。...在现实生活中,我们经常需要根据多个条件进行筛选,接下来,我们将介绍如何在pandas中进行一些高级筛选。
在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...查找字符串长度 在电子表格中,可以使用 LEN 函数找到文本中的字符数。这可以与 TRIM 函数一起使用以删除额外的空格。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回 -1。请记住,Python 索引是从零开始的。 tips["sex"].str.find("ale") 结果如下: 3....,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1.
比如下面两种操作: 定义一个 Series ,并放入 'Year' 列中: ? 从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...如果你确定要永久性删除某一行/列,你需要加上 inplace=True 参数,比如: ?...你可以用逻辑运算符 &(与)和 |(或)来链接多个条件语句,以便一次应用多个筛选条件到当前的 DataFrame 上。举个栗子,你可以用下面的方法筛选出同时满足 'W'>0 和'X'>1 的行: ?...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...请注意,如果你没有指定 axis 参数,默认是删除行。 删除列: ? 类似的,如果你使用 .fillna() 方法,Pandas 将对这个 DataFrame 里所有的空值位置填上你指定的默认值。
DataFrame既包含行索引,也包含列索引,可以视为多个Series集合而成,是一个非常常用的数据结构。...3.2 DataFarme的基础操作 (*1)输出前n行 输出前n行用到了head()函数,如果不加参数,默认输出前5行,加参数,例如3,输出前3行。输出尾部n行同理,用到了tail()函数。...delete 将位置i的元素删除,并产生新的索引 drop 根据传入的参数删除指定索引值,并产生新索引 unique 计算索引的唯一值序列 is_nuique 如果索引序列唯一则返回True is_monotonic...如果索引序列递增则返回True 4 pandas基本功能 这里主要关注Series或DataFrame数据交互的机制和最主要的特性。...4.1 重建索引 reindex是pandas对象的重要方法,该方法创建一个符合条件的新对象。如果某个索引值之前并不存在,则会引入缺失值;在这里注意与上一篇文章2.2的区别。
注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...的行; ② loc索引器的切片却包含终值,所以team.loc[3:4,[0,2]]中却包含行标签为4的行; ③ 同样是整数,在iloc索引器中将被解读为行/列下标,而在loc索引器中将被解读为行/...如果要删除多列,则要结合标签的花式索引形式: df.drop(['sex','salary'],axis=1,inplace=True) #inplace=True表示原地修改,即修改的结果直接作用于当前对象...以下是删除标签为4的行: df.drop(4,inplace=True) print("删除标签为4的行之后:") df 说明:可以通过?或help来查看以上操作函数的参数,例如df.drop?...()[['Q1','Q2']] #如果如果只有一列,则无需使用花式索引,如下所示: #team.groupby('team').mean()['Q1'] 2、找到满足条件的分组(过滤掉不满足条件的分组
如果为True,则原地修改DataFrame,即不会返回新的DataFrame;如果为False(默认值),则返回一个新的DataFrame。 errors:指定如何处理未找到要删除的标签。...如果设置为True,则创建并返回一个新的Series或DataFrame,数据类型被转换为指定的数据类型。...如果设置为True,则在数据类型转换时出现错误时,抛出异常;如果设置为False,则忽略错误,返回转换后的Series或DataFrame。...如果设置为True,则在转换数据类型时,自动填充缺失值。例如,将字符串类型转换为数值类型时,如果字符串中包含非数值字符,则自动将其填充为NaN。...如果为True,则原地修改DataFrame,即不会返回新的DataFrame;如果为False(默认值),则返回一个新的DataFrame。 errors:指定如何处理未找到要删除的标签。
警告 如果两个关键列都包含键为 null 值的行,则这些行将相互匹配。这与通常的 SQL 连接行为不同,可能会导致意外结果。...警告 如果两个关键列都包含键为 null 值的行,则这些行将相互匹配。这与通常的 SQL 连接行为不同,可能会导致意外结果。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。...如果找到子字符串,则该方法返回其位置。如果未找到,则返回-1。请记住,Python 索引是从零开始的。
数据生成 说明:生成指定格式/数量的数据 Excel 以生成10*2的0—1均匀分布随机数矩阵为例,在Excel中需要使用rand()函数生成随机数,并手动拉取指定范围 ?...Pandas 在Pandas中可以结合NumPy生成由指定随机数(均匀分布、正态分布等)生成的矩阵,例如同样生成10*2的0—1均匀分布随机数矩阵为,使用一行代码即可:pd.DataFrame(np.random.rand...Pandas 在Pandas中,可直接对数据框进行条件筛选,例如同样进行单个条件(薪资大于5000)的筛选可以使用df[df['薪资水平']>5000],如果使用多个条件的筛选只需要使用&(并)与|(或...数据删除 说明:删除指定行/列/单元格 Excel 在Excel删除数据十分简单,找到需要删除的数据右键删除即可,比如删除刚刚生成的最后一列 ?...Pandas 在Pandas中对数据进行分组计算可以使用groupby轻松搞定,比如使用df.groupby("学历").mean()一行代码即可对示例数据的学历进行分组并求不同学历的平均薪资,结果与Excel
10000,10) axis参数设置为1表示删除列,0表示行。...inplace参数设置为True以保存更改。我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。...如果您事先知道列名,则比以后删除更好。...df.dropna(axis=0, how='any', inplace=True) axis = 1用于删除缺少值的列。我们还可以为列或行具有的非缺失值的数量设置阈值。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。
当像上一步那样将数字列彼此相加时,pandas 将缺失值默认为零。 但是,如果缺少特定行的所有值,则 Pandas 也会将总数也保留为丢失。...步骤 4 使用大于或等于比较运算符返回布尔序列,然后在步骤 5 中使用all方法对其进行求值,以检查每个单个值是否为True。 drop方法接受要删除的行或列的名称。 默认情况下是按索引名称删除行。...如果步骤 4 求值为True,则整个数据帧中至少存在一个缺失值。 更多 电影数据集中具有对象数据类型的大多数列都包含缺少的值。...设置为any时,它将删除包含一个或多个缺失值的行。 设置为all时,它仅删除缺少所有值的行。 在这种情况下,我们保守地删除丢失所有值的行。 这是因为某些缺失值可能仅代表 0% 。...选择行的快捷方式仅包含索引运算符本身。 这只是显示 Pandas 其他功能的捷径,但索引运算符的主要功能实际上是选择数据帧的列。 如果要选择行,则最好使用.iloc或.loc,因为它们是明确的。
只有值为True的行才会被选择。 我们之前知道原始泰坦尼克号DataFrame由 891 行组成。...,isin() 条件函数会对提供的列表中的每一行返回True。...只有值为True的行将被选中。 我们之前知道原始泰坦尼克DataFrame由 891 行组成。...,isin()条件函数对于每一行数值在提供的列表中时返回True。...要基于此类函数过滤行,请在选择括号[]内使用条件函数。在这种情况下,选择括号内条件titanic["Pclass"].isin([2, 3])检查Pclass列数值为 2 或 3 的行。
Python~Pandas 小白避坑之常用笔记 ---- 提示:该文章仅适合小白同学,如有错误的地方欢迎大佬在评论处赐教 ---- 前言 1、Pandas是python的一个数据分析包,为解决数据分析任务而创建的...user_id重复列数:", duplicated_num) 2.缺失值统计、剔除: dropna()参数介绍: axis:0(对行数据进行剔除)、1(对列数据进行剔除),默认为0 how:any(行中有任意一个空值则剔除...), all(行中全部为空值则剔除) inplace:是否在该对象进行修改 import pandas as pd sheet1 = pd.read_csv(filepath_or_buffer='...) 3.遍历pandas对象进行异常值剔除、修改 需求:“Age”列存在数值为-1、0 和“-”的异常值,删除存在该情况的行数据;“Age”列存在空格和“岁”等异常字符,删除这些异常字符但须保留年龄数值...) # 根据索引,行剔除 sheet1.drop(labels=['城市', '地区'], axis=1, inplace=True) # 按列 删除(城市, 地区)列 print(sheet1.head
而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...中实现同样可以使用merge()并指定how关键字为left或者right即可 ?...FULL OUTER JOIN df2 ON df1.key = df2.key; 在pandas中实现同样可以使用merge()并指定how关键字为outer ?...七、合并 SQL中UNION操作用于合并两个或多个SELECT语句的结果集,UNION与UNION ALL类似,但是UNION将删除重复的行。...上面是UNION ALL保留重复值,如果希望删除可以使用 drop_duplicates() ?
数据新增-新增行 指定位置 1.4 数据删除 1. 数据删除-删除指定行 2. 数据删除-指定多行(条件) 3. 数据删除-删除列 4. 数据删除-删除多列 1.5 数据筛选 1....数据筛选与修改 数据的增删改查是 pandas 数据分析中最高频的操作,在分组、聚合、透视、可视化等多个操作中,数据的筛选、修改操作也会不断出现。...数据新增-增加列 比较值 新增一列比较值,如果一个国家的金牌数大于 20 则值为 是,反之为 否 df_new['金牌大于20'] = np.where(df_new['金牌数'] > 20, '是'...数据删除-指定多行(条件) # 数据删除|删除行(条件) df_new.drop(df_new[df_new.金牌数<20].index) 输出为: 3....isin(country_list)] 输出为: 提取 中国、美国、英国、日本、巴西 五行数据 并金牌数小于30 # 筛选行|多条件 # 提取 中国、美国、英国、日本、巴西 五行数据 并金牌数小于
读取Excel文件 首先,我们需要导入Pandas库,并读取Excel文件。...) 读取指定Sheet的数据 如果我们只对特定的Sheet感兴趣,可以指定sheet_name参数来读取: # 读取指定sheet的数据 df2 = pd.read_excel('data.xlsx',...[0, 'name'] = 'Kock' print(df.head(1)) # 修改指定条件行的数据 df.loc[df['age'] > 30, 'name'] = 'Adult' print(df...删除不需要的行或列也是常见的操作: # 删除指定整行数据 df = df.drop([14]) print(df.tail(1)) # 删除指定条件行数据 df = df.drop(df[df['age...(drop=True) 排序和筛选数据 Pandas提供了强大的排序和筛选功能: # 排序数据 df = df.sort_values(by='age') # 筛选数据 df = df[df['age
如果你只想学习关于Pandas的一件事,那就学习使用read_csv。 下面是一个解析非标准CSV文件的例子: 并简要介绍了一些参数: 由于 CSV 没有严格的规范,有时需要试错才能正确读取它。...如果你 "即时" 添加流媒体数据,则你最好的选择是使用字典或列表,因为 Python 在列表的末尾透明地预分配了空间,所以追加的速度很快。...如果该列已经在索引中,你可以使用join(这只是merge的一个别名,left_index或right_index设置为True,默认值不同)。...用drop删除行的速度出奇的慢,如果原始标签不是唯一的,就会导致错综复杂的bug。...比如说: 一个解决方案是使用ignore_index=True,它告诉concat在连接后重置行名: 在这种情况下,可以将名字列设置为索引。但是对于更复杂的过滤器来说,这就没有什么用了。
可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。 ix方法可以使用数值或者字符作为索引来选择行、列。 iloc则只能使用数值作为索引来选择行、列。...# 生成bool索引 print(df.age > 17) # 返回符合条件的数据 print(df[df.age > 17]) 输出结果,这里以年龄大于18岁为例。 ? ? 多条件查询。...当然Pandas还提供了更方便的条件查询方法,比如query、between、isin、str.contains(匹配开头)。 使用query进行条件查询。...agg方法则可一次汇总多个统计量。.../ 02 / 数据清洗 01 重复值处理 Pandas提供了查看和删除重复数据的方法,具体如下。
df.to_excel(r'年份汇总.xlsx', index = False) #输出到文件,index参数可以忽略索引输出 print(df) 结果如图所示,一共98万余条数据,输出时电脑已卡死 : 二、按照条件删除若干行...(df.shape) #获取删除前的数据形状 del_index = df[(df['pm2_5'] > 600) | (df['pm2_5'] 条件的行索引 df.drop...(del_index, inplace = True) #删除满足条件的行,inplace表示在源数据上删除,故没有返回值 print(df.shape) #输出删除后的数据形状 结果如下,可以看出输出前为...pd.Series语法将列表转为Series格式,如果不转换,将会报错,提示行不匹配。...再利用df.loc对满足条件的列赋值。 方法二利用.fillna对某一列的NaN赋值为-1,得到的为Series对象。再利用列赋值语句将原来的列覆盖。
但需要满足三个条件: 1.如果再发布的产品中包含源代码,则在源代码中必须带有原来代码中的BSD协议。...five' data4 = df2.loc[[3,2,1]] #print(data3) print(data4) print('多标签索引\n-----') # 多个标签索引,如果标签不存在,则返回NaN...所有数据:True返回原数据,False返回值为NaN 输出为: 1.4.3 DataFrame基本操作技巧 数据查看、转置 / 添加、修改、删除值 / 对齐 / 排序 数据查看、转置 # 数据查看...axis:表示轴编号(排序的方向),0代表按行排序,1代表按列排序。 ascending:表示是否以升序方式排序,默认为True。若设置为False,则表示按降序方式排序。...ascending:表示是否以升序方式排序,默认为True。若设置为False,则表示按降序方式排序。
在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...它返回了数量为95的所有行。如果用一般查询的方式可以写成: df [df [“Quantity”] == 95] 但是,如果想在同一列中再包含一个条件怎么办?...在多个条件过滤 一个或多个条件下过滤,query()的语法都保持不变 但是需要指定两个或多个条件进行过滤的方式 and:回在满足两个条件的所有记录 or:返回满足任意条件的所有记录 示例2 查询数量为95...与一般的Pandas提供的函数一样,inplace的默认值都是false,查询不会修改原始数据集。如果我们想覆盖原始df时,需要将inplace=true。
领取专属 10元无门槛券
手把手带您无忧上云