首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如果对中间结果应用了两个不同的转换,spark是否会重新计算中间结果?

Spark不会重新计算中间结果,因为Spark使用了弹性分布式数据集(RDD)来进行计算,RDD具有容错性和可恢复性。在Spark中,如果对中间结果应用了两个不同的转换,Spark会将每个转换操作都记录下来,而不是立即执行。当后续的操作需要使用到中间结果时,Spark会根据依赖关系直接从已经计算过的中间结果中获取数据,而不需要重新计算。

这种延迟计算的特性可以提高Spark的性能和效率,因为它能够避免重复计算。同时,Spark还支持基于血缘关系的容错机制,即使在计算过程中发生故障,Spark也可以通过重新执行丢失的转换操作来恢复丢失的中间结果,从而保证计算的正确性和可靠性。

对于以上问答内容中提到的中间结果应用两个不同的转换的情况,Spark会根据这两个转换的依赖关系来判断是否需要重新计算中间结果。如果这两个转换之间存在依赖关系,并且中间结果没有被缓存或持久化,则Spark会重新计算中间结果;如果这两个转换之间没有依赖关系,或者中间结果已经被缓存或持久化,则Spark可以直接使用已经计算过的中间结果,而不需要重新计算。

总之,Spark的延迟计算和容错机制可以提高计算性能和可靠性,同时也减少了不必要的计算开销。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

上万字详解Spark Core(好文建议收藏)

虽然MapReduce提供了对数据访问和计算抽象,但是对于数据复用就是简单中间数据写到一个稳定文件系统中(例如HDFS),所以产生数据复制备份,磁盘I/O以及数据序列化,所以在遇到需要在多个计算之间复用中间结果操作时效率就会非常低...在许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘中,不同计算阶段之间重用中间结果,即一个阶段输出结果作为下一个阶段输入。...RDD提供了一个抽象数据模型,让我们不必担心底层数据分布式特性,只需将具体应用逻辑表达为一系列转换操作(函数),不同RDD之间转换操作之间还可以形成依赖关系,进而实现管道化,从而避免了中间结果存储...在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失分区数据,而不是RDD所有分区进行重新计算。...可以看到这个DAG中只reduceByKey操作是一个宽依赖,Spark内核以此为边界将其前后划分成不同Stage。

73430

Spark中RDD运行机制

在实际应用中,存在许多迭代式算法和交互式数据挖掘工具,这些应用场景共同之处在于不同计算阶段之间重用中间结果,即一个阶段输出结果作为下一个阶段输入。...而 RDD 提供了一个抽象数据架构,从而让开发者不必担心底层数据分布式特性,只需将具体应用逻辑表达为一系列转换处理,不同 RDD 之间转换操作形成依赖关系,可以实现管道化,从而避免了中间结果存储...RDD 采用了惰性调用,即在 RDD 执行过程中,所有的转换操作都不会执行真正操作,只会记录依赖关系,而只有遇到了行动操作,才会触发真正计算,并根据之前依赖关系得到最终结果。 ?...因此,在进行数据恢复时,窄依赖只需要根据父 RDD 分区重新计算丢失分区即可,而且可以并行地在不同节点进行重新计算。...而对于宽依赖而言,单个节点失效通常意味着重新计算过程涉及多个父 RDD 分区,开销较大。

72610
  • Spark学习笔记

    Spark 主要特点还包括: (1)提供 Cache 机制来支持需要反复迭代计算或者多次数据共享,减少数据读取 IO 开销; (2)提供了一套支持 DAG 图分布式并行计算编程框架,减少多次计算之间中间结果写到...当我们在代码中执行了cache/persist等持久化操作时,根据我们选择持久化级别的不同,每个Task计算出来数据也保存到Executor进程内存或者所在节点磁盘文件中。  ...窄依赖是子 RDD各个分片(partition)不依赖于其他分片,能够独立计算得到结果,宽依赖指子 RDD 各个分片依赖于父RDD 多个分片,所以造成父 RDD 各个分片在集群中重新分片,...缓存中间结果进行 ShuffleReduceTask 计算,这个过程容易造成OutOfMemory. ?...性能优化 缓存   Spark中对于一个RDD执行多次算子(函数操作)默认原理是这样:每次你一个RDD执行一个算子操作时,都会重新从源头处计算一遍,计算出那个RDD来,然后再这个RDD执行你算子操作

    1.1K10

    Spark入门必读:核心概念介绍及常用RDD操作

    TaskSet:划分Stage转换成一组相关联任务集。...union (otherDataset):将两个RDD进行合并,返回结果为RDD中元素(不去重) intersection (otherDataset):两个RDD进行取交集运算,返回结果为RDD无重复元素...在较大数据集中使用filer等过滤操作后可能产生多个大小不等中间结果数据文件,重新分区并减小分区可以提高作业执行效率,是Spark中常用一种优化手段 repartition (numPartitions...Spark提供RDD多种缓存级别,可以满足不同场景RDD使用需求。RDD缓存具有容错性,如果有分区丢失,可以通过系统自动重新计算。...,如图2-3所示,如果子RDD只有部分分区数据损坏或者丢失,只需要从对应父RDD重新计算恢复。

    66160

    Spark入门必读:核心概念介绍及常用RDD操作

    TaskSet:划分Stage转换成一组相关联任务集。...union (otherDataset):将两个RDD进行合并,返回结果为RDD中元素(不去重) intersection (otherDataset):两个RDD进行取交集运算,返回结果为RDD无重复元素...在较大数据集中使用filer等过滤操作后可能产生多个大小不等中间结果数据文件,重新分区并减小分区可以提高作业执行效率,是Spark中常用一种优化手段 repartition (numPartitions...Spark提供RDD多种缓存级别,可以满足不同场景RDD使用需求。RDD缓存具有容错性,如果有分区丢失,可以通过系统自动重新计算。...,如图2-3所示,如果子RDD只有部分分区数据损坏或者丢失,只需要从对应父RDD重新计算恢复。

    1K30

    spark运行原理简单介绍和一些总结

    理解算子含义: hadoop只有map、Reduce这两个算子 Spark提供了很多算子: 如上图,一个Job被拆分成若干个stage,每个stage执行一些计算,产生一些中间结果,他们目的是最终生成这个...parititons个数 5,RDD.persist():持久化 默认每次在RDDs上进行action操作,spark重新计算RDDs,如果想重复利用一个RDDs,可以使用RDD.persisit...对数据转换,但是如果到最后我们并没有使用转换数据区计算结果呢?...这在大数据中是十分显著,那么怎么知道在使用时,再去执行呢?Spark内部有metadata表记录转换操作记录。...Shuffle write将shuffle MapTask任务产生中间结果缓存到内存中,shuffle fetch获取shuffleMapTask缓存中间结果进行shuffleReduceTask计算

    62610

    Hadoop与Spark等大数据框架介绍

    如果一次性加载到内存,那么就会因为单台计算内存空间有限而导致内存溢出。如果中间结果全部缓存到HashMap中,那么也因为单台计算内存空间有限而导致内存溢出。...MapReduce是一种计算模型,用以进行大数据量计算。其中Map对数据集上独立元素进行指定操作,生成键-值形式中间结果。...Reduce则中间结果中相同“键”所有“值”进行规约,以得到最终结果。MapReduce这样功能划分,非常适合在大量计算机组成分布式并行环境里进行数据处理。...RDD持久化 默认情况下,每一个转换RDD都会在它之上执行一个动作时被重新计算如果RDD只被使用一次或者很少次,不需要持久化。如果RDD被重复使用或者计算其代价很高,才考虑持久化。...Storage模块存取最小单位是数据块(Block),Block与RDD中Partition一一,所以所有的转换或动作操作最终都是Block进行操作。

    1.4K10

    BigData |述说Apache Spark

    不可变性: 代表每一个RDD都是只读,所包含分区信息不可以被修改,所以如果想要修改,就只能通过转换(Transformation),得到新RDD作为中间计算结果。...Transformation就是用来把一个RDD转换成另一个RDD,而Action则是通过计算返回一个结果。...",使用了新产生RDD来记录计算逻辑,这样就把作用在RDD上所有计算逻辑串联起来,形成一个链条,当遇上RDD动作操作时,Spark就会从计算链条最后一个RDD开始,依次从上一个RDD获取数据并执行计算逻辑...RDD持久化(缓存) 每当我们RDD调用一个新action操作时,整个RDD都会从头开始计算,因此如果某一个RDD被反复利用的话,这样子方式是低效,我们需要对其进行持久化操作。...Spark Streaming优缺点 优点: 数据容错性:如果RDD某些分区丢失了,可以通过依赖关系重新计算恢复。 运行速度: 将数据流存在在内存中,速度优势明显。

    69820

    Spark 入门简介

    Spark 针对 Hadoop-MR 做改进 减少了磁盘 I/O Spark 将 map 端中间输出和结果存储在内存中,避免了 reduce 端在拉取 map 端数据时候造成大量磁盘 I/O;...增加了并行度 由于将中间结果写到磁盘与从磁盘读取中间结果属于不同环节,Hadoop 将它们简单地通过串行执行衔接起来。...避免重新计算 当某个 Stage 中一个 Task 失败之后,Spark 重新这个 Stage 进行调度,并且过滤掉已经执行成功 Task,避免造成重复计算和资源浪费。...依赖具体分为两种,一种是窄依赖,RDD 之间分区是一一;另一种是宽依赖,下游 RDD 每个分区与上游 RDD(也称之为父 RDD)每个分区都有关,是多关系。...在 Spark 中,RDD 可以创建为对象,通过对象上各种方法调用来 RDD 进行转换。经过一系列 transformation 逻辑之后,就可以调用 action 来触发 RDD 最终计算

    66510

    Spark基础全解析

    我们只可以对现有的RDD进行转换转换(Transformation)操作,得到新RDD作为中间计算结果。...并行操作 Spark不需要将每个中间计算结果进行数据复制以防数据丢失,因为每一步产生RDD里都会存储它依赖关系。 所以并行操作前提是不同RDD之间有着怎样依赖关系。...sc.parallelize([2, 3, 4]).count() // 3 Spark在每次转换操作时候,使用了新产生 RDD 来记录计算逻辑,这样就把作用在 RDD 上所有计算 逻辑串起来,形成了一个链条...当 RDD 进行动作时,Spark 计算最后一个RDD开始,依次从上 一个RDD获取数据并执行计算逻辑,最后输出结果。...所以持久化RDD有自动容错机制。如果RDD 任一分区丢失了,通过使用原先创建它转换操作,它将会被自动重算。 持久化可以选择不同存储级别。

    1.3K20

    Spark 与 Hadoop 学习笔记 介绍及对比

    MapReduce分成了两个部分: 映射(Mapping)集合里每个目标应用同一个操作。即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在每个单元格上操作就属于mapping。...被分配了Map作业worker,开始读取对应分片输入数据,Map作业数量是由M决定,和split一一;Map作业从输入数据中抽取出键值,每一个键值都作为参数传递给map函数,map函数产生中间键值被缓存在内存中...master通知分配了Reduce作业worker它负责分区在什么位置(肯定不止一个地方,每个Map作业产生中间键值都可能映射到所有R个不同分区),当Reduce worker把所有它负责中间键值都读过来后...可以将 RDD 视作数据库中一张表。其中可以保存任何类型数据。Spark 将数据存储在不同分区上 RDD 之中。 RDD 可以帮助重新安排计算并优化数据处理过程。...此外,它还具有容错性,因为RDD知道如何重新创建和重新计算数据集。 RDD 是不可变

    1.2K31

    Spark Core 整体介绍

    每个 RDD 可以分成多个分区,每个分区就是一个数据集片段,并且一个 RDD 不同分区可以保存到集群中不同节点上,从而可以在集群中不同节点上进行并行计算 正是 RDD 这种惰性调用机制,使得转换操作得到中间结果不需要保存...,而是直接管道式流入到下一个操作进行处理 6.1 设计与运行原理 在实际应用中,存在许多迭代式算法和交互式数据挖掘工具,这些应用场景共同之处在于不同计算阶段之间重用中间结果,即一个阶段输出结果作为下一个阶段输入...而 RDD 提供了一个抽象数据架构,从而让开发者不必担心底层数据分布式特性,只需将具体应用逻辑表达为一系列转换处理,不同 RDD 之间转换操作形成依赖关系,可以实现管道化,从而避免了中间结果存储...与Wide Dependencies,这种计算输入和输出在不同节点上,lineage方法与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效,否则无效,因为无法重试,...对于宽依赖, Stage 计算输入和输出在不同节点上,对于输入节点完好,而输出节点死机情况,通过重新计算恢复数据这种情况下,这种方法容错是有效,否则无效,因为无法重试,需要向上追溯其祖先看是否可以重试

    38210

    Spark为什么比Hadoop快那么多?

    换句话说,Spark用了十分之一资源在三分之一时间里完成了Hadoop做事情。...不过,上面表格显示31倍速率差异,是否完全是Spark框架本身贡献? 如果仔细看Hadoop和Spark团队两次排序实践,会发现除了运算框架选取,其他还有很多不同。...Spark中每个transform返回值都是RDD,也就是transform是那些真正转换了RDD操作,而Action操作返回结果或把RDD数据写到存储系统中。...2.3 中间结果存储 Hadoop MapReduce所有中间结果(包括map/reduce task内部中间结果)都会存储在硬盘上,期间虽然会使用缓存,但当中间数据输出超出一定阈值(比如100M)...2.4 进程 vs 线程 Hadoop MapReduce和Spark都会将计算过程拆解成若干task,这些task分布在不同DataNode(Hadoop)或Worker(Spark)上执行。

    2.3K110

    Spark设计理念和基本架构

    Spark则允许将map端中间输出和结果缓存在内存中,从而使得reduce端在拉取中间结果时避免了大量磁盘I/O。...2)增加任务并行度:由于将中间结果写到磁盘与从磁盘读取中间结果属于不同环节,Hadoop将它们简单地通过串行执行衔接起来。...3)避免重新计算:当Stage中某个分区Task执行失败后,重新对此Stage调度,但在重新调度时候过滤已经执行成功分区任务,所以不会造成重复计算和资源浪费。...如果应用启用了检查点,那么在Stage中Task都执行成功后,SparkContext将把RDD计算结果保存到检查点,这样当某个RDD执行失败后,再由父RDD重建时就不需要重新计算,而直接从检查点恢复数据...ExternalSorter用于在map端或reduce端ShuffleMapTask计算得到中间结果进行排序、聚合等操作。

    1.1K60

    Spark和MapReduce相比,都有哪些优势?

    RDD抽象出一个被分区、不可变、且能并行操作数据集;从HDFS读取需要计算数据,在经过处理后中间结果作为RDD单元缓存到内存当中,并可以作为下一次计算输入信息。...当数据丢失时,对于窄依赖只需要重新计算丢失那一块数据来恢复;对于宽依赖则要将祖先RDD中所有数据块全部重新计算来恢复。所以在长“血统”链特别是有宽依赖时候,需要在适当时机设置数据检查点。...也是这两个特性要求对于不同依赖关系要采取不同任务调度机制和容错恢复机制。...如果只需要访问Int字段,RDD指针可以只访问Int数组,避免了整个数据结构扫描。 RDD将操作分为两类:transformation与action。...即Spark不会立刻计算结果,而只是简单记住所有对数据集转换操作。这些转换只有遇到action操作时候才会开始计算。 ?

    1.3K50

    4.3 RDD操作

    在默认情况下,Spark所有的转换操作都是惰性(Lazy),每个被转换得到RDD不会立即计算结果,只是记下该转换操作应用一些基础数据集,可以有多个转换结果。...Spark计算打散成多个任务以便在不同机器上分别运行,每台机器并行运行Map,并将结果进行Reduce操作,返回结果值Driver程序。...4.3.1 转换操作 转换操作是RDD核心之一,通过转换操作实现不同RDD结果,作为下一次RDD计算数据输入,转换操作不会触发Job提交,仅仅是标记RDD操作,形成DAG图,以供Action...表4-4 常用执行操作 [插图] 通过常用执行操作,Spark可以实现大部分MapReduce流式计算任务,提升了计算效率,Transformation操作进行结果值输出。...为了规避这一点,Spark保持Map阶段中间数据输出持久,在机器发生故障情况下,再执行只需要回溯Mapper持续输出相应分区,来获取中间数据。

    90070

    Spark 面试题系列-2

    在序列化时候,Spark 会将 Job 运行所依赖变量、方法全部打包在一起序列化,相当于它们副本,所以 counter 一起被序列化,然后传输到计算节点,是计算节点上 counter 自增,...9 说说 Spark 特点,相对于 MapReduce 来说 减少磁盘 I/O,MR 会把 map 端将中间输出和结果存储在磁盘中,reduce 端又需要从磁盘读写中间结果,势必造成磁盘 I/O 称为瓶颈...Spark 允许将 map 端中间结果输出和结果存储在内存中,reduce 端在拉取中间结果时候避免了大量磁盘 I/O。...增加并行度,由于把中间结果写到磁盘与从磁盘读取中间结果属于不同缓解,Hadoop 将他们简单地通过串行执行衔接起来,Spark 则把不同环节抽象成为 Stage,允许多个 Stage 既可以串行又可以并行执行...避免重新计算,当 Stage 中某个分区 Task 执行失败后,重新对此 Stage 调度,但在重新调度时候过滤已经执行成功分区任务,所以不会造成重复计算和资源浪费。

    65120

    【独家】一文读懂大数据计算框架与平台

    统计过程中,机器之间如何协调,是否需要专门一台机器指挥调度其他机器?如果这台机器挂了呢? (可选)如果销售记录在源源不断地增加,统计还没执行完新记录又来了,如何保证统计结果准确性?...上述问题中,除了第1个外,其余都与具体任务无关,在其他分布式计算场合也遇到,而且解决起来都相当棘手。即使第1个问题中分组、统计,在很多数据处理场合也涉及,只是具体方式不同。...如前面统计商品销售额例子,在Spark中只需要调用map和reduceByKey两个转换操作就可以实现,整个程序包括加载销售记录和保存统计结果在内也只需要寥寥几行代码,并且支持Java、Scala、Python...MapReduce中,只有map和reduce两个阶段,复杂计算需要大量组合,并且由开发者自己定义组合方式;Spark中,RDD可以连续执行多个转换操作,如果这些操作对应RDD分区不变的话,还可以放在同一个任务中执行...MapReduce中间结果放在HDFS中;Spark中间结果放在内存中,内存放不下时才写入本地磁盘而不是HDFS,这显著提高了性能,特别是在迭代式数据处理场合。

    5.5K71

    Spark Shuffle数据处理过程与部分调优(源码阅读七)

    相比于HadoopMapReduce,可以看到Spark提供多种计算结果处理方式,shuffle过程进行了优化。   那么我们从RDDiterator方法开始: ?   ...如果某个partition任务执行失败,可以利用DAG重新调度,失败partition任务将从检查点恢复状态,而那些已经成功执行partition任务由于其执行结果已经缓存到存储体系,所以调用CacheManager.getOrCompue...在computeOrReadCheckpoint中,如果存在检查点时,则进行中间数据拉取,否则将会重新执行compute,我们知道RDD具有linkage机制,所以可以直接找到其父RDD。 ?   ...那么spark优化在于:   1、map任务逐条输出计算结果,而不是一次性输出到内存,并使用AppendOnlyMap缓存及其聚合算法中间结果进行聚合,大大减少了中间结果所占内存大小。   ...那么 哪些Block从本地获取、哪些需要远程拉取,是获取中间计算结果关键。那么reduce端如何处理多个map任务中间结果

    77410

    SparkSpark之what

    (Flink正好相反,本质上就是一个事物从两个对立面的不同解释,并按照自己解释实现了各自流批统一计算引擎) 3....在Spark中,我们通过RDD操作表达我们计算意图,这些计算自动地在集群上并行执行。Spark最神奇地方就在于自动将函数分发到各个执行器节点上。...RDD与Stage并不是一一关系(Job 内部I/O优化): (1) 当RDD不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行。...: (1) 从外部数据或驱动程序创建出输入RDD (2) 使用转化操作对RDD进行转化,以定义新RDD (3) 需要被重用中间结果RDD执行内存或磁盘缓存操作 (4) 使用行动操作来触发一次并行计算...Spark内核从触发Action操作那个RDD开始从后往前推,首先会为最后一个RDD创建一个Stage,然后继续倒推,如果发现某个RDD是宽依赖,那么就会将宽依赖那个RDD创建一个新Stage

    86720
    领券