因为列族在创建表的时候是确定的,列名以列族作为前缀,按需可动态加入,如: cf:name, cf:age
4.groupByKey、reduceByKey、aggregateByKey、combineByKey区别
HBase每张表在底层存储上是由至少一个Region组成,Region实际上就是HBase表的分区。HBase新建一张表时默认Region即分区的数量为1,随着数据增长一个分区在达到一定大小时会自动Split,一分为二。
Hbase是基于HDFS的NOsql数据库,它很多地方跟数据库差不多,也有很多不同的地方。这里就不一一列举了,不过Hbase有个版本控制的特性,这个特性在很多场景下都会发挥很大的作用。本篇就介绍下基于Shell和Java API的Hbase多版本的读写。 为了更好的理解多版本,我们可以把普通的数据存储理解成二维空间,提供了rowkey,列族,列几个存储的维度。那么版本则相当于二维空间升华到了三维空间,多了时间维度的概念。如果按照默认的操作,当前的时间戳就是版本号,每个数据都可以保留多个版本的数据。你可
集群建备份,它是master/slaves结构式的备份,由master推送,这样更容易跟踪现在备份到哪里了,况且region server是都有自己的WAL 和HLog日志,它就像mysql的主从备份结构一样,只有一个日志来跟踪。一个master集群可以向多个slave集群推送,收到推送的集群会覆盖它本地的edits日志。 这个备份操作是异步的,这意味着,有时候他们的连接可能是断开的,master的变化不会马上反应到slave当中。备份个格式在设计上是和mysql的statement-based r
在「HBase」中, 从逻辑上来讲数据大概就长这样: 单从图中的逻辑模型来看, HBase 和 MySQL 的区别就是: 将不同的列归属与同一个列族下 支持多版本数据 这看着感觉也没有那么太大的区别呀
Navistar 是全球领先的商用卡车制造商。拥有350,000辆车的车队,计划外的维护和车辆故障会造成业务持续中断。Navistar需要一个诊断平台,该平台将帮助他们预测何时需要维修车辆从而最大程度地减少停机时间。这个平台需要能够收集、分析和服务来自车队中每辆车的70多种远程信息处理和传感器数据馈送,包括测量发动机性能、冷却液温度、卡车速度和制动器磨损的数据。Navistar求助于Cloudera,以帮助构建名为OnCommand®Connection的IoT的远程诊断平台,以监控其车辆的健康状况并增加车辆的正常运行时间。
“大数据” 三个字其实是个marketing语言,从技术角度看,包含范围很广,计算、存储、网络都涉及,知识点广、学习难度高。
最近知识星球有人问浪尖,自己的hbase集群元数据丢失了,但是数据还在,是否能够修复,其实这种情况下利用数据的hfile去修复元数据很常见,也有很多时候我们是生成hfile加载进hbase。
目录 · 机器学习、大数据相关岗位的职责 · 面试问题 · 答题思路 · 准备建议 · 总结 各个企业对这类岗位的命名可能有所不同,比如推荐算法/数据挖掘/自然语言处理/机器学习算法工程师,或简称算法
本系列主题是大数据开发面试指南,旨在为大家提供一个大数据学习的基本路线,完善数据开发的技术栈,以及我们面试一个大数据开发岗位的时候,哪些东西是重点考察的,这些公司更希望面试者具备哪些技能。
那么我们如何实现自己的数据源呢?下面我们会分两部分,第一部分是已经有第三方实现了的标准Spark数据源的集成,第二个是你自己创造的新的数据源。
(1)自我介绍 (2)JVM如何加载一个类的过程,双亲委派模型中有哪些方法? (3)HashMap如何实现的? (4)HashMap和Concurrent HashMap区别, Concurrent
背景 MapReduce和Spark对外提供了上百个配置参数,用户可以为作业定制这些参数以更快,更稳定的运行应用程序。本文梳理了最常用的一些MapReduce和Spark配置参数。 MapReduce重要配置参数 1. 资源相关参数 (1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。 (2) mapreduce.reduce.memory.mb: 一个Reduce Ta
当你需要搭建大数据平台的时候一定是传统的关系型数据库无法满足业务的存储计算要求了,所以首先我们面临的是海量的数据。
如果能通过上面的几条,我么可能就会采用该套技术了。然而这往往会导致很多误用。比如很多人就把zookeeper当存储用了,因为倒也满足上面的一些需求。
和写流程相比,HBase读数据是一个更加复杂的操作流程,这主要基于两个方面的原因:
1、Zookeeper 的由来 在Hadoop生态系统中,许多项目的Logo都采用了动物,比如 Hadoop 和 Hive 采用了大象的形象,HBase 采用了海豚的形象,而从字面上来看 ZooKeeper 表示动物园管理员,所以大家可以理解为 ZooKeeper就是对这些动物(项目组件)进行一些管理工作的。 对于单机环境多线程的竞态资源协调方法,我们一般通过线程锁来协调对共享数据的访问以保证状态的一致性。 但是分布式环境如何进行协调呢?于是,Google创造了Chubby,而ZooKeeper则是对于Ch
大家好,我是一哥,昨天看到了过往记忆大佬发了一篇文章,才发现Sqoop这个项目最近不咋好,心里很不是滋味,这个帮助过很多开发者的项目,竟然从Apache顶级项目中“下架”了,今天还是想给大家分享介绍一些这个很棒的项目,致敬!
在【rainbowzhou 面试8/101】技术提问--如何进行大数据基准测试?中,我介绍了如何进行大数据基准测试。本篇来说说常见的一些大数据基准测试工具,希望对大家有所帮助。
ZooKeeper 通常用于:命名服务、配置管理、集群管理、分布式协调/通知、分布式锁和分布式队列等等。
经过了用户画像,标签系统的介绍,又经过了业务数据调研与ETL处理之后,本篇博客,我们终于可以迎来【企业级用户画像】之标签开发。
Kudu有自己的数据存储模型,不依赖于HDFS、Hive、HBase其他大数据组件。Kudu有自己的集群,数据存储在Kudu自己的集群Tablet Server中。
Apache Kylin 在中通是如何落地的,又是怎样赋能中通快递实现 OLAP 分析能力起飞的?本文从多方面对比了 Presto 和 Kylin 的优缺点,并从业务场景、调度整合、监控系统、运维调优、源码和二次开发等多个角度进行了阐述。
数据量爆发式增长的今天,数字化转型成为IT行业的热点,数据需要更深度的价值挖掘,应对未来不断变化的需求。海量离线数据分析可以应用于多种商业系统环境,例如电商海量日志分析、用户行为画像分析、科研行业的海量离线计算分析任务等场景。
本文作者:康凯森,来源于:https://blog.bcmeng.com,文章写的非常详细,从各个方面对Kylin和Doris进行了对比。
今天带来的是2022全新升级的 《Java岗面试核心MCA版》 ,这个版本里面不仅仅包含了面试题,还有更多的技术难点、 大厂算法、实战项目、简历模板 等等, 全册接近1700页 !相比上一个版本的287页,升级了多少内容可想而知!!!
面试题总结是一个长期工作,面试不停,这份面试题总结就不会停。以后会慢慢把Java相关的面试题、计算机网络等都加进来,其实这不仅仅是一份面试题,更是一份面试参考,让你熟悉面试题各种提问情况,当然,项目部分,就只能看自己了,毕竟每个人简历、实习、项目等都不一样。
紧接上篇【rainbowzhou 面试2/101】项目介绍,接下来面试官会开始就你的介绍,进行技术面、技术点、甚至到技术细节的提问,那么相应地就会要求我们对回答的技术面、技术点,对应实现的技术细节,做到胸有成竹或滚瓜烂熟的程度。
本篇博客,博主为大家介绍的是关于Kylin的增量构建的步骤过程,以及其与全量构建的差异对比!看完之后,相信你也一定能够感受到这里面的大学问~
1、Hadoop的整体框架 Hadoop由HDFS、MapReduce、HBase、Hive和ZooKeeper等成员组成,其中最基础最重要元素为底层用于存储集群中所有存储节点文件的文件系统HDFS
Hadoop正成为企业用于大数据分析的最热门选择,但想将你的数据移植过去并不容易。Apache Sqoop正在加紧帮助客户将重要数据从数据库移到Hadoop。随着Hadoop和关系型数据库之间的数据移动渐渐变成一个标准的流程,云管理员们能够利用Sqoop的并行批量数据加载能力来简化这一流程,降低编写自定义数据加载脚本的需求。
1、Hadoop的整体框架 Hadoop由HDFS、MapReduce、HBase、Hive和ZooKeeper等成员组成,其中最基础最重要元素为底层用于存储集群中所有存储节点文件的文件系统HDFS(Hadoop Distributed File System)来执行MapReduce程序的MapReduce引擎。 (1)Pig是一个基于Hadoop的大规模数据分析平台,Pig为复杂的海量数据并行计算提供了一个简单的操作和编程接口; (2)Hive是基于Hadoop的一个工具,提供完整的SQL查询,
来源:https://blog.csdn.net/zwgdft/article/details/106291463
如果要深入了解Apache Hudi技术的应用或是性能调优,那么明白源码中的原理对我们会有很大的帮助。Upsert是Apache Hudi的核心功能之一,主要完成增量数据在HDFS/对象存储上的修改,并可以支持事务。而在Hive中修改数据需要重新分区或重新整个表,但是对于Hudi而言,更新可以是文件级别的重写或是数据先进行追加后续再重写,对比Hive大大提高了更新性能。upsert支持两种模式的写入Copy On Write和Merge On Read ,下面本文将介绍Apache Hudi 在Spark中Upsert的内核原理。
Java开发是IT行业的经典岗位,行业当中存在普遍的需求,Web开发、Android开发、游戏开发等岗位,基本上Java语言是主力队伍。而进入大数据时代,Java又在大数据方向上有了用武之地。今天我们主要来讲讲Java大数据开发做什么,又该如何进行成长路线规划。
1.Cloudera Manager词汇 下图说明了Cloudera Manager的基本名词和关系: 一个Deployment代表了全部,包括Cluster。Cluster是一些运行相同版本CDH的Host的集合,不同的Host又会划给不同的Rack。Service是特定系统的实例,跨越了许多Role,每个Role都会被分配给一个Host。角色配置组是一次配置多个角色的一种方式,这也是常见的情况。 Configuration被附加到多个上下文,并且可以酌情级联。例如存储DataNode日志文件的路径通常
通常使用Spark的流式框架如Spark Streaming,做无状态的流式计算是非常方便的,仅需处理每个批次时间间隔内的数据即可,不需要关注之前的数据,这是建立在业务需求对批次之间的数据没有联系的基础之上的。
大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。 企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而
最近很多球友都说在准备面试,不知道准备点啥,尤其是spark,实际上星球里浪尖分享的内容真的都掌握了,应对一般面试绝对没问题,但是遗憾的事情是很多人都是处于不会主动搜集资料,主动梳理知识,主动记忆整理知识,而是伸手要粮的境地。浪尖觉得这个是阻止你成长的罪魁祸手。前天跟朋友聚餐就说道这种情况,不努力,不加班给自己喂粮的,没有足够量和时间积累的人很难在一个领域里有所建树。
Java开发是IT行业的经典岗位,行业当中存在普遍的需求,Web开发、Android开发、游戏开发等基本上Java语言是主力队伍。而进入大数据时代,Java又在大数据方向上有了用武之地,又该如何进行成长路线规划。在Java程序界流行着一种默认的说法叫黄金5年,也就是一个程序员从入职的时候开始算起,前五年的选择直接影响着整个职业生涯中的职业发展方向和薪资走向。
整篇文章约2.5万字(不包含引用和连接内容)。如果这个文章对你有帮助,不要忘记 「在看」「点赞」「收藏」 。
上图是一个简化的大数据处理流程图,大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。下面我们逐一对各个环节所需要的技术栈进行讲解:
互联网技术的发展让大多数企业能够积累大量的数据,而企业需要灵活快速地从这些数据中提取出有价值的信息来服务用户或帮助企业自身决策。然而处理器的主频和散热遇到了瓶颈,CPU难以通过纵向优化来提升性能,所以多核这种横向扩展成为了主流。也因此,开发者需要利用多核甚至分布式架构技术来提高企业的大数据处理能力。这些技术随着开源软件的成功而在业界得到广泛应用。
在一些业务场景中需要将Hive的数据导入到HBase中,通过HBase服务为线上业务提供服务能力。本篇文章Fayson主要通过在Hive上创建整合HBase表的方式来实现Hive数据导入到HBase。
给定一个abdcdd字符串和一个abd字符串,在abdcdd字符串中找出abd字符串出现的第一个位置(从0开始),如果不存在,则返回-1.
谈到大数据框架,不得不提Hadoop和 Spark,今天我们进行历史溯源,帮助大家了解Hadoop和Spark的过去,感应未来。 在Hadoop出现前人们采用什么计算模型呢?是典型的高性能 HPC workflow,它有专门负责计算的compute cluster,cluster memory很小,所以计算产生的任何数据会存储在storage中,最后在Tape里进行备份,这种workflow主要适用高速大规模复杂计算,像核物理模拟中会用到。 HPC workflow在实际应用中存在一些问题,这些问题
1.从http://www.apache.org/dyn/closer.cgi/hbase/下载稳定版安装包,我下的是hbase-1.2.6-bin.tar.gz
领取专属 10元无门槛券
手把手带您无忧上云