若问目前IT领域最炙手可热的技术方向,必属人工智能(简称AI)无疑。前有谷歌的阿法狗完胜围棋世界冠军柯洁,后有微软小冰出版了诗集《阳光失了玻璃窗》,一时间沸沸扬扬,似乎人工智能无所不能,从而掀起了人民大众了解和关注AI的大潮。 虽然人工智能看起来仿佛刚刚兴起,但是它的相关产品早已普遍应用,在工业制造领域,有越来越多的机器人用于自动化生产;在家庭生活领域,则有智能锁、扫地机器人等助力智能家居。这些智能产品的背后,离不开人工智能的几项基本技术,包括计算机视觉、自然语言处理、数据挖掘与分析等等。这几项技术的应用说明如下: 1、计算机视觉,包括图像识别,视频识别等技术,可应用于指纹识别、人脸识别、无人驾驶汽车等等; 2、自然语言处理,包括音频识别、语义分析等技术,可应用于机器翻译、语音速记、信息检索等等; 3、数据挖掘与分析,包括大数据的相关处理技术,可应用于商品推荐、天气预报、红绿灯优化等等; 上述的几个人工智能应用,看似牛逼,可是这跟Android开发有什么关系呢?其实手机App很早就用上了相关的智能技术,还记得12306网站的神奇验证码吧,买张热点地区的火车票一直是个老大难,常常在火车站售票窗口排了许久的队伍,终于排到你的时候却发现目的地的火车票卖光了。特别是春运的时候,即使不到售票窗口排队,而是到12306网站买票,也常常因为各种操作问题贻误下单,于是各种抢票插件应运而生,帮助用户自动登录、自动选择乘车日期和起止站点、自动下单抢票。抢票插件的核心功能之一,便是自动识别登录过程中的验证码图片,原本这个验证码图片是用来阻止程序自动登录的,然而道高一尺魔高一丈,任你采取图片验证码又如何,抢票插件照样能够识别出图片所呈现出来的形状。注意,这里提到的识别图片中的验证码,即为人工智能的一项初级应用。 验证码图片识别,最简单的是数字验证码,因为数字只有从0到9一共十个字符,并且每个数字的形状也比较简单,所以本文就从数字验证码的识别着手,拨开高大上的迷雾,谈谈人工智能的初级应用。 先来看看一张再普通不过的验证码图片:
我们都知道,计算机它只会计算,其它的能力都是我们赋予给它的,它只是按照我们的步骤去执行而已。
大数据文摘作品,转载要求见文末 作者 | Adrian Rosebrock 编译 | keiko、万如苑 这是一篇关于安装和使用Tesseract文字识别软件的系列文章。 所谓的光学字符识别是指把打印的手写的或者印刷图片中的的文本自动转化成计算机编码的文本由此我们就可以通过字符串变量控制和修改这些文本。 如果你想了解更多关于Tesseract库和如何使用Tesseract来实现光学字符识别请看本文。 安装OCR软件Tesseract 起初惠普公司在上世纪八十年代就开发了Tesseract,并在2005年公
上一节,我们完成了网络训练代码的实现,还有一些问题需要做进一步的确认。网络的最终目标是,输入一张手写数字图片后,网络输出该图片对应的数字。由于网络需要从0到9一共十个数字中挑选出一个,于是我们的网络最
很多的文章会介绍有关深度学习的一些新闻报道,但我们却并不真正了解其背后的原理!那么今天我们这篇文章便会带大家一览其中的奥秘!
最近工作中有把图片中的文字和数字识别出来的需求,但是网上的图片转excel有些直接收费,有些网址每天前几次免费,后续依然要收费。
在我们进行自动化测试的过程中,免不了要在登录时遇到验证码,很多时候我们都是只能找开发要万能验证码或者暂时关闭验证码这个功能,但是有时候我们必须要验证码是否能够正常生成,所以在这个时候,我们需要做的就是输入验证码,但是验证码这个东西是随机生成的,不是每一次都一样,所以我们还是需要识别然后输入,脚本是没有眼睛的,只能通过代码来进行识别,所以本文就来给大家介绍一下如何使用Python来轻松识别数字验证码。
没吃过猪肉,但得看过猪跑。虽然我们暂时对深度学习及神经网路的基本原理知之甚少,但获得深刻理性认识必须建立在足够的感性认知之上,就像掌握游泳技巧的前提是把自己泡到水里。因此我们在研究分析神经网络的技术原理时,先用代码构建一个实用的智能系统,通过运行后看结果的方式,我们就能快速建立起对深度学习相关技术的感知,这为我们后续建立扎实的理论体系奠定坚实的基础。 神经网络系统的开发一般都使用python语言,我们也不例外,我们的手写数字识别系统将使用python来开发,首先要做的是在机器上安装开发环境,也就是Anaco
图像识别(Image Recognition)是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。
本文通过实例介绍了如何使用OpenCV库进行数字识别,并使用kNN算法对数字进行分类。首先,使用OpenCV自带的OCR模块对九宫格数字进行识别,提取出数字,并进行预处理。然后,使用kNN算法对数字进行分类,通过提取的特征向量以及k值,对数字进行预测。最后,通过实验验证了该方法的可行性和有效性。
此项目用于对中国购车发票进行内容识别,目前完成的是身份证,vin,发动机号,价格的识别提供了展示的demo页,以及提供了传入文件,路径,base64码的多种方式调用的api,返回识别出来的json数据。
本文讲述如何通过对比学习算法实现手写数字识别,并使用一个基于SVM的算法进行测试。通过对比不同算法的效果,得出结论:使用基于SVM的算法可以较好地识别手写数字。
前面介绍了能够对连续值进行预测的简单线性回归模型,并使用梯度下降算法进行迭代求解。当然深度学习不仅能够处理连续值预测的回归问题,还能够处理预测固定离散值的分类问题。分类问题的一个典型应用就是自动识别图像中物体的种类,手写数字识别是常见的图像识别任务。
此项目用于对中国购车发票进行内容识别,目前完成的是身份证,vin,发动机号,价格的识别 提供了展示的demo页,以及提供了传入文件,路径,base64码的多种方式调用的api,返回识别出来的json数
深度学习在计算机图像识别上的应用非常成功。利用深度学习,我们能够对图片进行高精度识别,实现这一功能的,主要依靠神经网络中的一种分支,名为卷积网络。卷积网络与我们前面实现的网络不通之处在于,它可以直接接受多维向量,而我们以前实现的网络只能接收一维向量。 我们在开始时,实现了一个能够识别手写数字图片的网络,网络接收数据时,必须把一张28*28的灰度图转换为784长的一维向量。在深入解析卷积网络前,我们直接用代码将其实现出来,通过卷积网络实现手写数字识别功能,先获得一个感性认识,为后续的深入研究打下基础,我们看看
其实就几个步骤: 1:用程序先把所有验证码(已知的,单个的)的灰度值放入一个数组 2:分割未知验证码,把未知验证码的一个一个数字或字母分割出来 3:分别取分割验证码的 灰度值 4:将分割验证码的灰度值与数组中的灰度值进行匹配,匹配程度最大的,即可能就是该码
验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义。
本文将从图片中文字提取的原理以及应用案例等多方面进行讲述,希望一文能为你讲透通用文字识别。
本文将具体介绍如何在Python中利用Tesseract软件来识别验证码(数字加字母)。
作者介绍: 叶成,数据分析师,就职于易居中国,热爱数据分析和挖掘工作,擅长使用Python倒腾数据。 前言 学习爬虫也有段时间了,闲着无趣,想找点项目练练手,于是乎通过顺祥老师介绍,接到了一个关于百度指数的爬虫需求。(百度指数可以反映一个词在一段时间内的搜索热度,不知道百度指数的同学们可以自行百度)。好的,话不多说,开始我们的项目。 百度指数页面 输入查询的关键字 嗯?跳转到了登陆界面!(赶紧拿出小本本记下,这里需要登陆)。 登陆后的展现 心中窃喜,脑子里满是抓包分析,模拟请求,获取指数,gam
写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字、字母的组合,国内也有使用汉字的。在这个基础上增加噪点、干扰线、变形、重叠、不同字体颜色等方法来增加识别难度。 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果的数据集。 当
本系列将分为 8 篇 。本次为第 5 篇 ,结合上一篇的应用实例 ,将前边学到一些基础知识用到手写数字的识别分类上 。
1、pooling是在卷积网络(CNN)中一般在卷积层(conv)之后使用的特征提取层,使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度,一方面增加了特征的整合度。
很高兴大家喜欢!Github:leonof/imgRecJs[1],刚刚上传,代码还需要完善~因为有不少同学表示训练和识别有疑问,我做了个小接口放在最后,可以方便大家先把流程走通。
本推文主要识别的验证码是这种: 第一步: 二值化 所谓二值化就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只剩下需要识别的文字,让图片变成2进制点阵。 第二步: 文字分割 为了能识别出字
验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。
随着数据数字化的推广普及,很多客户在业务上会有一些新的突破与尝试。为帮助客户更高效的打造专业化解决方案,腾讯云在 AI 处理能力方面不断深耕,助力各行各业的数字化、智能化转型。
canvas 的历史这个 HTML 元素是为了客户端矢量图形而设计的。它自己没有行为,但却把一个绘图 API 展现给客户端 JavaScript 以使脚本能够把想绘制的东西都绘制到一块画布上。canvas 标记由 Apple 在 Safari 1.3 Web 浏览器中引入。对 HTML 的这一根本扩展的原因在于,HTML 在 Safari 中的绘图能力也为 Mac OS X 桌面的 Dashboard 组件所使用,并且 Apple 希望有一种方式在 Dashboard 中支持脚本化的图形。Firefox 1
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
在开始介绍腾讯云文字识别之前,先来了解OCR技术的基本概念和原理。OCR技术通过对图像或扫描文档进行分析和处理,将其中的文字内容转换为可编辑和可搜索的文本。
对于OCR文字提取,在之前也介绍过了Umi-OCR 这个工具,那么我们今天要分享的这个主要是来用于解决验证码相关的问题的一个开源工具。ddddocr ,作者的github项目地址如下:https://github.com/sml2h3/ddddocr?tab=readme-ov-file
#今天被催更了,于是我立马抽空写了第3篇。 接着往期的2篇继续,一步步动手做: 自己动手做一个识别手写数字的web应用02 自己动手做一个识别手写数字的web应用01 1 目录结构 新建一个we
这是关于人脸的第①篇原创!(源码在第三篇)
这是一个TensorFlow的系列文章,本文是第三篇,在这个系列中,你讲了解到机器学习的一些基本概念、TensorFlow的使用,并能实际完成手写数字识别、图像分类、风格迁移等实战项目。 文
作者 | 邹欣 编辑 | 姗姗 【人工智能头条导读】又是一个很有热度的周末,除了炎热的天气,还有火热的世界杯。今天人工智能头条为大家准备的技术干货,让大家可以在空调下,吃瓜看球两不耽误就可以轻松完成AI应用实践入门。多少次,在我们查找很多资源、技术指导后,实操时还是会被一个报错而终止了前进的道路。小编也曾经历过这样的心路历程,所以一份好的指南对于刚开始实践操作的同学来说简直太有爱了,不仅节约了很多时间,操作和思路也都是清晰的。如果你是刚入门的AI小白,想通过一些简单的应用实践对AI应用有更深入的了解,现在就
指纹识别技术作为生物识别技术之一,指纹识别技术是通过取像设备读取指纹图像,然后在用识别软件提取指纹特征数据,最后在进行匹配识别算法得到结果,以确认指纹所有人身份的生物特征识别技术。
本篇概览 使用Deeplearning4j训练出来的模型,可以在java应用中使用吗? 当然能,今天咱们花三分钟来体验集成了AI能力的SpringBoot应用 该应用的功能是识别黑白图片中的手写数字(每张图片内只有一个数字),如下图,通过http接口将此图片提交,让SpringBoot应用去识别: 下图是postman操作界面的截图,红框中的数字就是SpringBoot应用的识别结果,数字8,与图片一致: SpringBoot应用用到的AI模型是LeNet-5,这是个经典的识别模型,常用在
来源:http://www.hi-roy.com/2017/09/19/Python验证码识别
如果对当今人工智能的主流技术——深度学习没有了解,可能真的会有人觉得,当前的科学家们在创造无所不能、无所不知的电影AI形象。
在生活中,很多时候需要识别一些图片中的数字和字母,就像很多网站的验证码识别,对于个人来说,单个的此类事件需要的时间和精力很少,可对于一些机构、企业来说,可能就需要重复很多次(例如某些机构需要向某网站提交多次文档、申请多次访问等操作)。这时,大量的此类工作对于人眼的损耗较大,不但需要损耗人力,同时由于眼花和疲劳等原因可能会导致读取出来的信息出现差错,从而降低效率。所以,就需要使用电脑来执行这一操作。
随着数据数字化的推广普及,很多客户在业务上会有一些新的突破与尝试。为帮助客户更高效的打造专业化解决方案,腾讯云在 AI 处理能力方面不断深耕,助力各行各业的数字化、智能化转型。 腾讯云对象存储 COS 作为云上数据存储的大本营,基于数据万象的多媒体数据处理能力,打造了云上一站式的数据处理平台。 10月,数据万象联合腾讯云 AI 和腾讯优图实验室推出了一些新的功能,针对存储在腾讯云对象存储 COS 上的图片,以更高效、更便捷的方式进行智能化处理。 1 图片质量评估 图片在当今已经是传播最广泛的一种信息载
没有验证码登陆,黑客会更加容易激活成功教程你的账号,通过组合码刷机等黑客技术来破取你的密码,有了验证码相当于加了一层很厚的屏障,安全系数很高。 验证码是一种区分用户是计算机和人的公共全自动程序。 验证码作用:可以防止恶意激活成功教程密码、刷票、论坛灌水,有效防止某个黑客对某一个特定注册用户用特定程序暴力激活成功教程方式进行不断的登陆尝试,实际上是用验证码是现在很多网站通行的方式(比如招商银行的网上个人银行,百度社区),利用比较简易的方式实现了这个功能。
我们发现登录目标网站只需填写用户的信息,然后填写验证码既可以登录网站,明确需求以后我们开始操作
现在数字无处不在,无论是闹钟、健身追踪器、条形码还是包装好了的送货包裹。利用MNIST数据集,机器学习可用来读取单个手写数字。现在,我们可以将其扩展为读取多个数字,如下所示。底层的神经网络同时进行数字定位和数字检测。这在很多实际环境中是非常有用的,例如读取商店中的标签,车牌,广告等。
大多数其他的验证码都是比较简单的。例如,流行的 PHP 内容管理系统 Drupal 有一个著 名的验证码模块(https://www.drupal.org/project/captcha),可以生成不同难度的验证码。
顾名思义,图像识别就是对图像进行各种处理,分析,并最终确定我们要研究的目标。当今的图像识别不仅指人的肉眼,而且还指使用计算机技术进行识别。
领取专属 10元无门槛券
手把手带您无忧上云