我在深度学习博客中看到了一些有关 TensorFlow 2.0 的教程,但是对于刚刚提到的那些困惑,我不知道该从何处着手去解决。你能给我一些启示吗?...下周我将针对这三种方法撰写专门的教程,但目前来说,先让我们看一下如何使用 TensorFlow 2.0、tf.keras 与模型子类化功能实现一个基于 LeNet 架构的简单 CNN。 ?...图 6:TensorFlow 2.0 在多 GPU 训练上是否更好了呢?是的,你只需要一个 MirroredStrategy。...基于你有多个 GPU,TensorFlow 会为你考虑如何使用多 GPU 进行训练的。 TF2.0 是一个生态系统,它包含了 TF 2.0、TF LITE、TFX、量化和部署 ?...你不仅体验到了 TensorFlow 2.0 带来的加速和优化,而且还知道了 keras 包的最新版本(v2.3.0)将成为支持多个后端和特性的最后一个版本。
在这些情况下,你可以考虑使用 PyTorch 和 TensorFlow ,特别是如果你所需的训练模型与其中一个框架模型库中的模型类似。...TensorFlow 2.0 的重点放在了简单性和易用性上,其这个版本拥有一系列的新功能,包括急切执行、直观的高级 API 以及可以在任何平台上构建模型等。...高效地使用 TensorFlow 2.0 方法是,使用高级的 tf.keras API(而不是旧的低级 AP,这样可以大大减少需要编写的代码量。...目前亚马逊正在全力为Keras 开发 MXNet 后端。你也可以使用 PlaidML(一个独立的项目)作为Keras 的后端,利用 PlaidML 的 OpenCL 支持所有 GPU 的优势。...在某些特定的情况下,可能某个框架优于另一个——至少在当前版本是如此。你可能还会发现,学习其中某一个更为容易,原因可能是框架中的某些基本功能,也有可能是教程的质量。
在这些情况下,你可以考虑使用PyTorch和TensorFlow,特别是如果你所需的训练模型与其中一个框架模型库中的模型类似。 ?...TensorFlow 2.0的重点放在了简单性和易用性上,其这个版本拥有一系列的新功能,包括急切执行、直观的高级API以及可以在任何平台上构建模型等。...高效地使用TensorFlow 2.0方法是,使用高级的tf.keras API(而不是旧的低级AP,这样可以大大减少需要编写的代码量。...Keras Keras是用于构建神经网络模型的高级前端规范和实现。Keras支持三种后端深度学习框架:TensorFlow、CNTK和Theano。目前亚马逊正在全力为Keras开发MXNet后端。...你也可以使用PlaidML(一个独立的项目)作为Keras的后端,利用PlaidML的OpenCL支持所有GPU的优势。
昨天,一位 reddit 网友说自己正在尝试从 PyTorch 转到 TF 2. 0(虽然没有说为什么这么想不开),但他吐槽说:真是「太难了」。...正如发帖者所说,TensorFlow 待回答问题数量比 PyTorch 高了 10 倍还要多。更何况,PyTorch 还有一个专门的团队在平台上负责解答疑问。...有位网友就评论说,他在使用 TF2.0 的过程中遇到了很多问题,但是幸好有官方的开发经理跟进和解决,所以他才愿意继续留在 TF2.0 上继续使用。 ?...引入 Keras 可能是个错误 Keras 是一个封装了 TF 等深度学习框架的代码库,具有很好的易用性。TensorFlow 为了解决饱受诟病的上手困难问题而引入了 Keras 的 API。...但是 Keras 则正好和它相反,用户不知道底层的架构如何搭建,只需要关注整体的设计流程即可。
: 现在还不是最终版本,而且可能还不太稳定,不过大家都可以开始尝试,并提出建议和反馈,请查看如何提交报告: 本文结构: 从 TensorFlow 1.12 到 TensorFlow 2.0 preview...Keras 用户使用 TensorFlow 作为后端,所以 TensorFlow 的曲线可能会更高。...TensorFlow 不容易 debug 例如当得到一个错误的结果时,NaN 或异常,它不会告诉你问题的来源, 当有很多操作时,调试起来会很棘手, 虽然有一个专门的调试器,但并不易使用。 ?...这里面包含一个循环,当 autograph 将这个函数转换成 TensorFlow 版本时,它知道当它在图形模式下运行时,应该创建一个使用 TensorFlow 的 while_loop() 操作的 graph...TensorFlow 2.0 正在摆脱 tf.layers,应该使用 Keras 层, keras loss 和 keras metrics 也将基于 tf.losses 和 tf.metrics。
什么是Keras Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。...作为 Keras 用户,你的工作效率更高,能够比竞争对手更快地尝试更多创意,从而帮助你赢得机器学习竞赛。...---- Keras 支持多个后端引擎,不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。...支持的后端有: 谷歌的 TensorFlow 后端 微软的 CNTK 后端 Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。...GPU, 比如 AMD, 通过 PlaidML Keras 后端 ---- Keras 拥有强大的多 GPU 和分布式训练支持 Keras 内置对多 GPU 数据并行的支持。
虽然肯定是值得庆祝的时刻,但许多深度学习从业人员(例如耶利米)都在挠头: 作为Keras用户,TensorFlow 2.0版本对我意味着什么? 我是否应该使用keras软件包来训练自己的神经网络?...TensorFlow v1.10是TensorFlow的第一个版本,在tf.keras中包含了一个keras分支。...引用Keras的创建者和维护者Francois Chollet: 这也是多后端Keras的最后一个主要版本。...我将在下周针对这三种方法进行专门的教程,但是暂时,让我们看一下如何使用(1)TensorFlow 2.0,(2)tf基于开创性的LeNet架构实现简单的CNN。...您不仅会享受TensorFlow 2.0的更快的速度和优化,而且还将获得新的功能更新-keras软件包的最新版本(v2.3.0)将成为支持多个后端和功能更新的最新版本。
大家好,这是专栏《TensorFlow2.0》的第三篇文章,讲述如何使用TensorFlow2.0读取和使用自己的数据集。...因此我们是很有必要学会数据预处理这个本领的。本篇文章,我们就聊聊如何使用TensorFlow2.0对自己的数据集进行处理。...这个步骤虽然看起来比较复杂,但在TensorFlow2.0的高级API Keras中有个比较好用的图像处理的类ImageDataGenerator,它可以将本地图像文件自动转换为处理好的张量。...2 使用Dataset类对数据预处理 由于该方法在TensorFlow1.x版本中也有,大家可以比较查看2.0相对于1.x版本的改动地方。...tensorFlow2.0版本与1.x版本的区别,红色部分属于1.X版本。
为了训练你自己的自定义神经网络,Keras 需要一个后端。后端是一个计算引擎——它可以构建网络的图和拓扑结构,运行优化器,并执行具体的数字运算。...与此同时,Google 发布了 TensorFlow,这是一个用于机器学习和神经网络训练的符号数学库。Keras 开始支持 TensorFlow 作为后端。...一般来说,一旦 TensorFlow 成为了 Keras 的默认后端,TensorFlow 和 Keras 的使用量会一起增长——没有 TensorFlow 的情况下就无法使用 Keras,所以如果你在系统上安装了...随着 Keras 2.3.0 的发布,Francois 在声明中写道: 这是 Keras 首个与 tf.keras 同步的版本,也是 Keras 支持多个后端(即 Theano,CNTK 等)的最终版本...比如在 TF 2.0 版本中,除了「TF2.0」 这个关键字,你还要弄清楚:这个文档是关于 TF2.0 本身的,还是关于 tf.keras 的。 悼念?
【新智元导读】微软今天发布了深度学习工具包CNTK的2.0版本,新版本增加了支持 Keras 的 CNTK 后端,Java API,模型评估的 Spark 支持,模型压缩等新功能,微软全球技术院士黄学东称其比同类产品快...它的第一个版本已经在速度方面不输许多竞争产品,而新的2.0版强调了产品的可用性(例如增加对 Python 和 Keras 神经网络库的支持)和未来的可扩展性,同时仍保持,甚至提高了速度。...GitHub地址:https://github.com/microsoft/cntk Cognitive Toolkit 2.0 新功能: 支持 Keras 的 CNTK 后端 使用 Halide 非常快的二进制卷积...因为它本质上是一个内部工具,因此它不支持 Python,即使 Python 是现在机器学习开发者中最流行的语言。...黄学东强调,认知工具包的第一个版本在许多标准测试中都很轻易地超过了许多同类产品。Keras 是很受欢迎的基于 Python 的深度学习库,TensorFlow 和 Theano 都支持 Keras。
过去两年我一直使用Keras/TF,直到最近我才改用PyTorch。现在我真的很喜欢PyTorch,我觉得它更简洁明了。只是我个人的看法。 ? 我使用Tensorflow/Keras已经有一段时间了。...文章介绍了“均方误差”损失,以及如何使用它来在TensorFlow上训练“深层神经网络” 5、我把头撞在键盘上 他表示:TensorFlow的一个主要问题是生态系统,就是说,博客文章、stackoverflow...当我有关于TF 2.0的问题时,我经常做的是: 在搜索查询中将“tensorflow”替换为“keras”,更有可能找到最佳答案。 直接查看TF 2.0源代码 这两个都不是用户友好的寻求帮助的选择。...Keras出现后,就变成经典TF和Keras混在一起的半吊子指南了。要学习如何使用常规TF层是不可能的,除非查看旧的repos等等。这就是我转向PyTorch的原因。...无论如何,尽管看起来他们稍微完善了TF文档并增加了评级和更轻松地提供反馈的方式,但我认为文档的问题不在于文档本身,而在于框架太凌乱,以至于写得很好的书面文档都会令人困惑。
本文将会介绍从原生 Tiny YOLO Darknet 模型到 Keras 的转换,再到 Tensorflow.js 的转换,如何利用其作一些预测,在编写 Tensorflow.js 遇到的一些问题,以及介绍使用联网摄像头...所以我们的第一步就是将 YOLO 模型转换为更加 Tensorflow 式的东西,在我们的例子中,这个东西是 Keras。Keras 是一个更高级的深度学习框架。...我已经把所有的难题解决了,所以如果你还觉得这些看起来太多了的话,你可以直接跳过这一步。 我们将要安装官方转换工具。在终端运行 pip install tensorflowjs 指令来安装转换器。...不幸的是,在 Tensorflow.js 中,如果你在 tf.slice 上尝试这样操作,它只会默默地失败。 3....你不能使用 5d 张量 注意,Tensorflow,js 的 WebGL 后端不支持 5d 张量。既然无法想象五维的样子,为什么还要使用它们?
这意味着只需维护一个组件实现,就可以在所有框架中使用完全相同的数值。 除此之外,还发布了用于大规模数据并行和模型并行的新分布式API,为多设备模型分片问题提供Keras风格的解决方案。...也有人敲警钟 在迫不及待尝试新版本的开发社区氛围中,Cohere机器学习总监Nils Reimers提出“真心希望历史不要重演”,也获得不少关注。...这引发了一系列问题: 某些功能只在特定后端可用 各个后端的计算结果存在不一致:在一个后端上运行正常的代码,在另一个后端可能产生不同结果 对于开源软件开发者来说体验糟糕:你刚完成了一个自定义的 Keras...调试问题:代码在一个后端上表现完美,但在另一个后端的最新版本上却频繁出错… 随着时间推移,这些问题愈发严重:某些模块只能在 Theano 上运行良好,某些只适用于Tensorflow,还有一些模块可以在...我希望这一次的多后端能有更好的表现,但这无疑仍是一个挑战。
选自Medium 作者:Karan Jakhar 机器之心编译 参与:小舟、魔王 如何选择工具对深度学习初学者是个难题。本文作者以 Keras 和 Pytorch 库为例,提供了解决该问题的思路。...那么到底应该选哪一个呢?本文分享了一个解决思路。 做出合适选择的最佳方法是对每个框架的代码样式有一个概览。开发任何解决方案时首先也是最重要的事就是开发工具。你必须在开始一项工程之前设置好开发工具。...一旦开始,就不能一直换工具了,否则会影响你的开发效率。 作为初学者,你应该多尝试不同的工具,找到最适合你的那一个。但是当你认真开发一个项目时,这些事应该提前计划好。...每天都会有新的框架和工具投入市场,而最好的工具能够在定制和抽象之间做好平衡。工具应该和你的思考方式和代码样式同步。因此要想找到适合自己的工具,首先你要多尝试不同的工具。...最新版本的 TensorFlow 也提供类似 PyTorch 的 eager 模式,但是速度较慢。 如果你熟悉 NumPy,你可以将 PyTorch 视为有 GPU 支持的 NumPy。
最后,我对第一部分中不经常使用的库做了一个“福利”板块,你或许还会从中发现有用的或者是在第二板块中我还没有尝试过但看起来很有趣的库。 接下来就让我们继续探索。...相比于Theano ,TensorFlow的主要优点是分布式计算,特别是在多GPU的环境中(虽然这是Theano正在攻克的项目)。...Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。...这使得创建像GoogLeNet和SqueezeNet这样复杂的网络结构变得容易得多。 我认为Keras唯一的问题是它不支持多GPU环境中并行地训练网络。这可能会也可能不会成为你的大忌。...当需要评估一个特定的问题是否适合使用深度学习来解决时,我倾向于使用这个库作为我的第一手判断。
今年初,我们在 TensorFlow 开发者大会 (TensorFlow Dev Summit) 上发布了 TensorFlow 2.0 的 Alpha 版本。.../install TensorFlow 2.0 由社区推动,社区的声音让我们了解到开发者需求的是一个灵活、强大且易于使用的平台,并且支持部署到任何平台上。...支持使用 Keras Model.fit 进行分布式训练,并支持自定义训练循环 (custom training loops)。此外,现已提供多 GPU 支持。...当然,如果您使用过 TensorFlow 1.x 并正在寻找 2.0 的迁移指南,我们也已经在此发布。TensorFlow 2.0 正式版还包含一个自动转换脚本以帮助您入门。...在线课程:要了解如何使用 TensorFlow 2.0 构建应用程序,请查看我们与 deeplearning.ai 和 Udacity 一起创建的在线课程。
1 Keras概述 在TensorFlow2.0中,Keras是一个用于构建和训练深度学习模型的高阶 API。...因此如果你正在使用TensorFow2.0,那么使用Keras构建深度学习模型是您的不二选择。在Keras API中总共有如下三大块: ?...因此若您使用的深度学习框架是TensorFlow,而且是2.0版本,那么你就不可能不使用tensorflow.keras。...这也就是使用过TensorFlow2.0版本的都在吐槽全世界都是Keras的原因。 ?...TensorFlow2.0中高级API Keras是如何使用的,我们可以看到Keras真的是无处不在,如果你想学好TensorFlow2.0,那么你必须掌握好Kears。
版本。.../install TensorFlow 2.0 由社区推动,社区的声音让我们了解到开发者需求的是一个灵活、强大且易于使用的平台,并且支持部署到任何平台上。...支持使用 Keras Model.fit 进行分布式训练,并支持自定义训练循环 (custom training loops)。此外,现已提供多 GPU 支持。...当然,如果您使用过 TensorFlow 1.x 并正在寻找 2.0 的迁移指南,我们也已经在此发布。TensorFlow 2.0 正式版还包含一个自动转换脚本以帮助您入门。...在线课程:要了解如何使用 TensorFlow 2.0 构建应用程序,请查看我们与 deeplearning.ai 和 Udacity 一起创建的在线课程。
作为 Keras 用户,你的工作效率更高,能够比竞争对手更快地尝试更多创意,从而帮助你赢得机器学习竞赛。...与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。...Keras 支持多个后端引擎,不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。...支持的后端有: 谷歌的 TensorFlow 后端 微软的 CNTK 后端 Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。...GPU, 比如 AMD, 通过 PlaidML Keras 后端 Keras 拥有强大的多 GPU 和分布式训练支持 Keras 内置对多 GPU 数据并行的支持。
领取专属 10元无门槛券
手把手带您无忧上云