操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...合并不是pandas的功能,而是附加到DataFrame。始终假定合并所在的DataFrame是“左表”,在函数中作为参数调用的DataFrame是“右表”,并带有相应的键。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...'diameter'的列,基于半径列中的值,基本上是直径 = 半径 * 2,我们可以使用 .apply()。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...或者尝试找到适用于任务的现有NumPy函数。 如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...第一列是 0。 **column:赋予新列的名称。 value:**新列的值数组。 **allow_duplicates:**是否允许新列名匹配现有列名。默认值为假。
这是你将传递到函数中的信息。 函数体。这是定义函数功能的地方。通常,我会为我的函数编写代码,并首先使用现有的数据结构进行测试,然后将代码放入函数中。 返回值。这是你的函数在完成编写后将返回的内容。...函数式编程。一种编写代码的方式,在这种方式下,你将一个或多个数据片段传递到一个函数中,然后返回的结果将是这些数据片段的某种转换。这意味着你不需要修改函数体中的现有变量。...python 示例:将函数链接在一起 本例基于 pyjanitor 文档中的一个示例,向你展示了如何使用现有 pandas 函数设置一个小的数据管道。...在这里,我将研究如何用一行代码向函数添加测试。 在上面编写的 python 函数中,我返回了最常见的值……但是如果有多个返回值的情况怎么办?...预测数据的变化 我所说的「数据的变化」是指数据中的差异,这些差异会把事情分解开来。例如,你可能编写了一个函数,假设你的数据帧有一个名为 latitude 的列。
最后,您将学习如何管理数据库表,例如创建新表或修改现有表的结构。 第 1 节. 查询数据 主题 描述 简单查询 向您展示如何从单个表中查询数据。 列别名 了解如何为查询中的列或表达式分配临时名称。...使用 SERIAL 自增列 使用 SERIAL 将自动增量列添加到表中。 序列 向您介绍序列并描述如何使用序列生成数字序列。 标识列 向您展示如何使用标识列。 更改表 修改现有表的结构。...重命名表 将表的名称更改为新名称。 添加列 向您展示如何向现有表添加一列或多列。 删除列 演示如何删除表的列。 更改列数据类型 向您展示如何更改列的数据。 重命名列 说明如何重命名表中的一列或多列。...了解 PostgreSQL 约束 主题 描述 主键 说明在创建表或向现有表添加主键时如何定义主键。 外键 展示如何在创建新表时定义外键约束或为现有表添加外键约束。...检查约束 添加逻辑以基于布尔表达式检查值。 唯一约束 确保一列或一组列中的值在整个表中是唯一的。 非空约束 确保列中的值不是NULL。 第 14 节.
这是一个相当好玩的玩具数据集,因为具有基于时间的列以及分类列和数字列。 如果我们要在这些数据上创建特征,我们需要使用Pandas进行大量的合并和聚合。 自动特征工程让我们很容易。...让我们将数据帧添加到其中。添加dataframe的顺序并不重要。要将数据帧添加到现有的实体集中,我们执行以下操作。 ? 因此,我们在这里做了一些将数据帧添加到空的实体集存储桶的事情。...▍序数编码 有时会有一个与类别相关联的订单,在这种情况下,通常在pandas中使用一个简单的映射/应用函数来创建一个新的序数列。...标签编辑器本质上做的是它看到列中的第一个值并将其转换成0,下一个值转换成1,依次类推。这种方法在树模型中运行得相当好,当我在分类变量中有很多级别时,我会结束使用它。我们可以用它作为: ? ?...它与二进制编码器不同,因为在二进制编码中,两个或多个俱乐部参数可能是1,而在哈希散列中只有一个值是1。 我们可以像这样使用哈希散列: ? ? 一定会有冲突(两个俱乐部有相同的编码。
以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...具体而言,在本章中,我们将介绍: 重命名列 使用[]和.insert()添加新列 通过扩展添加列 使用连接添加列 重新排序列 替换列的内容 删除列 添加新行 连接行 通过扩展添加和替换行 使用.drop...可以使用[]运算符将新列添加到数据帧。...然后,pandas 将新的Series与副本DataFrame对齐,并将其添加为名为RoundedPrice的新列。 新列将添加到列索引的末尾。 .insert()方法可用于在特定位置添加新列。...如果需要一个带有附加列的新数据帧(保持原来的不变),则可以使用pd.concat()函数。 此函数创建一个新的数据帧,其中所有指定的DataFrame对象均按规范顺序连接在一起。
函数接受数据帧df,较短均线的列名称short_col和较长均线的列名称long_col,inplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df。...函数接受数据帧df,中轨的列名称mid_col,上轨列名称upper_col,下轨列名称lower_col,inplace参数控制是否原地更新df。买卖信号应保存在signal列中。...函数接受数据帧df,RSI列名称rsi_col,inplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df。...函数接受数据帧df,CCI列名称cci_col,inplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df。...函数接受数据帧df,OBV列名称obv_col,inplace参数控制是否原地更新df。买卖信号应保存在signal列中。最后返回df。
GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...complex_dtypes_to_json将一个给定的Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。...42 的键 x 添加到 maps 列中的字典中。
isna 函数确定数据帧中缺失的值。...16.重置并删除原索引 在某些情况下,我们需要重置索引并同时删除原始索引。....where 函数 它用于根据条件替换行或列中的值。...df['Geography'] = df['Geography'].astype('category') 24.替换值 替换函数可用于替换数据帧中的值。...我已经在数据帧中添加了df_new名称。 ? df_new[df_new.Names.str.startswith('Mi')] ?
使用举例及使用场景介绍 这里的情况是,我们有销售订单数据,其中,对于现有销售订单的每次更改,表中都将有一个新记录。...一旦我们在RANK函数的帮助下排列数据集,我们可以将RANK值过滤为“1”,以将最近的记录获取到输出。...Threshold: 该值由系统用于在计算RANK之后过滤结果数据集。 如果我们将它定义为“1”,系统只给出基于分区和顺序的第一个记录。 该阈值可以是“固定”值或用户输入参数。...Partition: 此列用于根据我们定义的列对源数据集进行分区。 这与我们在SQL脚本中编写RANK函数相同。 对于我们的场景,分区列将是“ORDER_NO”。...现在我们可以添加另一个projection,并对'排名列'应用过滤器为'1',这样我们只有前1条记录。 我们将阈值保持为“5”,只是为了向您展示等级列在输出中的外观。
使用举例及使用场景介绍 这里的情况是,我们有销售订单数据,其中,对于现有销售订单的每次更改,表中都将有一个新记录。...一旦我们在RANK函数的帮助下排列数据集,我们可以将RANK值过滤为“1”,以将最近的记录获取到输出。...如果我们将它定义为“1”,系统只给出基于分区和顺序的第一个记录。 该阈值可以是“固定”值或用户输入参数。 在我们的例子中,我们将这个定义为“fixed”并赋值5。...Partition: 此列用于根据我们定义的列对源数据集进行分区。 这与我们在SQL脚本中编写RANK函数相同。 对于我们的场景,分区列将是“ORDER_NO”。...现在我们可以添加另一个projection,并对'排名列'应用过滤器为'1',这样我们只有前1条记录。 我们将阈值保持为“5”,只是为了向您展示等级列在输出中的外观。
采用数据驱动的方法可以验证以前提出的断言/假设,并基于对数据的彻底检查和操作开发新的见解。...当基于多个数据集之间比较数据时,标准做法是使用(.shape)属性检查每个数据帧中的行数和列数。如图所示: ? 注意:左边是行数,右边是列数;(行、列)。...为了比较州与州之间 SAT 和 ACT 数据,我们需要确保每个州在每个数据帧中都被平等地表示。这是一次创新的机会来考虑如何在数据帧之间检索 “State” 列值、比较这些值并显示结果。...我的方法如下图展示: ? 函数 compare_values() 从两个不同的数据帧中获取一列,临时存储这些值,并显示仅出现在其中一个数据集中的任何值。...请注意,在显示 print()的输出后,添加 “\ n” 表达式会打印一个新行。 由于这次分析的目的是比较 SAT 和 ACT 数据,我们越能相似地表示每个数据集的值,我们的分析就越有帮助。
我们将一个对象传递给包含将添加到现有对象中的数据的方法。 如果我们正在使用数据帧,则可以附加新行或新列。 我们可以使用concat函数添加新列,并使用dict,序列或数据帧进行连接。...让我们看看如何将新信息添加到序列或数据帧中。 例如,让我们在pops序列中添加两个新城市,分别是Seattle和Denver。...我有一个列表,在此列表中,我有两个数据帧。 我有df,并且我有新的数据帧包含要添加的列。...我们探索了 Pandas 序列数据帧并创建了它们。 我们还研究了如何将数据添加到序列和数据帧中。 最后,我们介绍了保存数据帧。 在下一章中,我们将讨论算术,函数应用和函数映射。...如果给定单个值,那么所有指示缺少信息的条目将被该值替换。dict可用于更高级的替换方案。dict的值可以对应于数据帧的列;例如, 可以将其视为告诉如何填充每一列中的缺失信息。
在本章中,您将学习如何从数据帧中选择一个数据列,该数据列将作为序列返回。 使用此一维对象可以轻松显示不同的方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...通常,这些新列将从数据集中已有的先前列创建。 Pandas 有几种不同的方法可以向数据帧添加新列。 准备 在此秘籍中,我们通过使用赋值在影片数据集中创建新列,然后使用drop方法删除列。...这在第 3 步中得到确认,在第 3 步中,结果(没有head方法)将返回新的数据列,并且可以根据需要轻松地将其作为列附加到数据帧中。axis等于1/index的其他步骤将返回新的数据行。...在分析期间,可能首先需要找到一个数据组,该数据组在单个列中包含最高的n值,然后从该子集中找到最低的m基于不同列的值。...更多 为了使这一过程自动化,我们可以编写一个函数,该函数在中接收股票数据,并输出日收益率的直方图以及与平均值相差 1、2 和 3 个标准差的百分比。
通过简单地为表达式指定一个名称,你可以很好地记录并理解代码。 在计算列或迭代中,还可以使用RELATEDTABLE函数检索相关表的所有行。...在这种情况下,ALL函数返回该列在整个表中的所有不重复值。...图5 使用列作为ALL函数的参数生成该列的不重复值列表 我们可以在ALL函数的参数中指定同一个表中的多列。在这种情况下,ALL函数返回这些列中所有现有值的组合。...因此,ALLEXCEPT函数返回包含该表其他列中现有值组合的唯一列表。 通过ALLEXCEPT函数编写的DAX表达式,将自动在结果中包含将来可能出现在表中的任何附加列。...通过对本书的学习,你将了解如何使用DAX语言进行商业智能分析、数据建模和数据分析;你将掌握从基础表函数到高级代码,以及模型优化的所有内容;你将确切了解在运行DAX表达式时,引擎内部所执行的操作,并利用这些知识编写可以高速运行且健壮的代码
它可以帮助对数据类型进行必要的更改、创建新特征、对数据进行排序以及从现有特征中创建新特征。...添加和删除列 添加列 就像在 Excel 等电子表格中一样,你可以添加一个新列,该列可能是从现有列或特征创建的。要在 Mito 中执行此操作,只需单击“Add Col”按钮。...该列将添加到当前选定的列旁边。最初,列名将是一个字母表,列的所有值都为零。 编辑新列的内容 单击新列名称(分配的字母表) 将弹出侧边栏菜单,你可以在其中编辑列的名称。...要更新该列的内容,请单击该列的任何单元格,然后输入值。你可以输入一个常量值,也可以根据数据集的现有特征创建值。如果要从现有列创建值,则直接使用要执行的运算符调用列名。...要使用 Mito 创建这样的表, 单击“Pivot”并选择源数据集(默认加载 CSV) 选择数据透视表的行、列和值列。还可以为值列选择聚合函数。
提出了一种准确、鲁棒且高效的HSO算法,通过实验结果支持所提出的HSO在准确性、鲁棒性和效率方面优于现有的基于特征和直接的单目vSLAM/VO方法,尤其在处理图像强度剧烈变化时表现出色。 2....概述 光度校准线程在线生成最佳的光度校准参数,它不断接收新的关键帧并将其添加到关键帧队列中,该队列用于构建窗口化优化问题,通过在该队列中对当前关键帧的曝光时间进行优化,可以减少由帧间传递引起的漂移,然后...它接收新的关键帧并将其添加到关键帧队列中。为了减少由帧间传递引起的漂移,当前关键帧的曝光时间在关键帧队列中进行优化,然后,通过解决窗口化优化问题,估计相机的光度参数,从而实现更准确的光度校准。...当响应曲线未知时,目标函数无法找到唯一的解,我们只能得到一组产生相同像素值的解,这类似于单目vSLAM/VO中的尺度问题,但不同之处在于我们不需要找到正确的尺度因子使光度校准系统可用。...在三个公共数据集上评估了提出的系统,总体而言,我们的系统在效率、准确性和稳健性方面优于现有的单目基于特征和直接方法,该系统可以解决一些现有方法中的棘手情况,例如EuRoC MAV数据集中的V103和V203
然而,VDiT 推理过程中仍然存在帧间计算冗余和算子计算强度差异较大的问题。现有基于有限帧间相似性的计算方法以及静态硬件架构和数据流设计,无法有效解决 VDiT 推理速度缓慢的瓶颈。...基于差分近似方法,我们进一步提出了列聚集处理单元,以利用列稀疏模式。相比仅支持稠密或稀疏的 PE,该方法在面积效率上分别提高了 1.56 倍和 1.42 倍。...通过这种方法,可以实现数据的稀疏化,因为在数学计算中,零值与任何值相乘的结果仍然是零,从而有效减少计算量。...尽管差分计算在传统深度学习中已取得成功,例如 Cambricon-D [ISCA 2024] 在 ReLU 激活函数中引入了这一技术,但在 VDiT 模型中,主要的注意力机制包含了大量激活 - 激活(Act-Act...列聚集处理单元 我们观察到这些激活呈现出列稀疏性模式,这是因为 patch 向量之间的编码格式具有一致性。实验发现,激活矩阵中 87.94% 的非零值聚集在不到 23.50% 的列中。
也完全可以将数据帧一起添加。 将数据帧加在一起将在计算之前对齐索引和列,并产生不匹配索引的缺失值。 首先,从 2014 年棒球数据集中选择一些列。...所有数据帧都可以向自己添加新列。...但是,像往常一样,每当一个数据帧从另一个数据帧或序列添加一个新列时,索引都将在创建新列之前首先对齐。 准备 此秘籍使用employee数据集添加一个新列,其中包含该员工部门的最高薪水。...让我们将此结果作为新列添加到原始数据帧中。...在数据帧的当前结构中,它无法基于单个列中的值绘制不同的组。 但是,第 23 步显示了如何设置数据帧,以便 Pandas 可以直接绘制每个总统的数据,而不会像这样循环。
领取专属 10元无门槛券
手把手带您无忧上云