首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何确定TFS中的标签应用于哪个变更集?

在TFS(Team Foundation Server)中,标签用于将一个特定的代码版本或构建与一个特定的发布或事件相关联。要确定TFS中的标签应用于哪个变更集,请按照以下步骤操作:

  1. 打开TFS Web门户,并导航到您的团队项目。
  2. 在项目中,找到“源代码”或“版本控制”选项卡,并点击进入。
  3. 在“源代码”页面上,找到“标签”选项卡,并点击进入。
  4. 在“标签”页面上,您将看到项目中创建的所有标签列表。找到您要查询的标签,并点击进入。
  5. 在标签详情页面上,您可以看到标签应用于哪个变更集。变更集是指从一个特定的代码版本到另一个代码版本之间所做的一系列更改。通常,这些变更集是按照提交时间进行排序的,因此您可以轻松地找到应用了标签的变更集。
  6. 如果您需要查看应用了标签的代码更改,可以点击变更集的ID号,然后在新页面上查看详细信息。

通过以上步骤,您可以确定TFS中的标签应用于哪个变更集。如果您需要进一步的帮助,请随时联系您的团队管理员或TFS管理员。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • (十七)什么是Scrum?

    Scrum是由Ken Schwaber 和Jeff Sutherland在1990年创建的主流敏捷技术。进入新世纪,互联网带来的巨变使敏捷方法受到了更多开发团队的青睐,而且中Scrum以其扩展性、门槛低、名字和术语更容易被项目经理接受等原因,逐渐成为最受欢迎的敏捷流派,超过50%以上的项目在运用这项方法。与其说Scrum是一种方法,不如将其称之为一个框架更为贴切,在此框架中人们可以解决复杂的自适应难题,同时也能高效并创造性地交付可能最高价值的产品。自上世纪90年代以来,它就已经被用于管理复杂产品的工作上。Scrum并不是一种过程、技术或者决定性方法。倒不如说它是一个框架,在此框架中,我们可以使用各种不同的过程和技术。Scrum让我们的产品管理和工作技术的相对成效更加清晰地显现出来,以便我们可以持续改进产品,团队和工作环境。

    01

    Nat. Mach. Intel. | 基于图神经网络在单细胞ATAC-seq数据上推测转录因子调控网络

    本文介绍由北京卫生服务与输血医学研究所、北京放射医学研究所的Xiaochen Bo研究员团队和Hebing Chen研究员团队联合发表在Nature Machine Intelligence的研究成果。作者开发了一个名为DeepTFni的新计算方法,可在scATAC-seq数据上推测转录因子调控网络(TRN)。通过使用图神经网络,DeepTFni在TRN推测中具有出色的性能,且该方法适用于有限细胞数目情况。此外,通过应用DeepTFni,作者识别了组织发育和肿瘤发生中的枢纽TF,并揭示了混合表型急性白血病相关基因对TRN发生显着改变,而在信使RNA水平上仅存在中度差异。DeepTFni网络服务器易于使用,并为几种流行的细胞系提供预测的TRNs。

    03

    Nat. Commun. | scGNN,一种新型的用于单细胞RNA测序分析的图神经网络框架

    今天给大家介绍密苏里大学许东教授和俄亥俄州立大学马勤教授的团队发表在Nature Communications上的一篇文章 “scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses”。单细胞RNA测序 (scRNA-seq) 被广泛应用于揭示组织、生物和复杂疾病的异质性和动力学,但其分析仍面临多个重大挑战,包括测序的稀疏性和基因表达的复杂差异模式。本文提出了scGNN (单细胞图神经网络),为scRNA-seq分析提供了一个无假设的深度学习框架。这个框架用图神经网络来表达和聚集细胞间的关系,并使用左截断的混合高斯模型来建模异质基因表达模式。scGNN集成了三种迭代多模态自动编码器,其在四个scRNA-seq基准数据集上的基因插补和细胞聚类性能优于现有工具。在一项阿尔茨海默症研究中,从死后脑组织中提取13214个单核,scGNN成功地阐明了疾病相关的神经发育和差异机制。scGNN为基因表达和细胞间关系的有效表达提供了帮助。它也是一个强大的可以应用于一般的scRNA-Seq分析的框架。

    02

    Nat. Genet. | 哺乳动物胚胎发生细胞轨迹的系统重建

    本文介绍由美国华盛顿大学基因组科学系的Chengxiang Qiu和美国洛克菲勒大学Junyue Cao等人共同发表在 Nature Genetics 的研究成果:作者着手整合几个与小鼠原肠胚形成和器官形成相关的单细胞RNA序列数据集。此外,作者定义了跨越E3.5到E13的19个连续阶段中每个阶段的细胞状态,试探性地将它们与其伪祖先和伪后代联系起来。尽管是通过自动化程序构建的,但由此产生的哺乳动物胚胎发生轨迹(TOME)在很大程度上与我们当代对哺乳动物发育的理解一致。作者还利用TOME指定转录因子(TF)和TF基序作为新细胞类型出现的每个分支点的关键调节因子。最后,为了便于脊椎动物之间的比较,作者对斑马鱼和青蛙胚胎发育相关的单细胞数据集应用相同的程序,并根据共享的调节器和转录状态指定“细胞类型同源物”。

    03

    发布变更又快又稳?腾讯运维工程师经验首发

    导读| 如何让功能缺陷修复快速上线?版本发出问题时怎样快速回退?效率提升后质量掉队?为解决这些常让运维工程师头疼的事情,本栏目特邀腾讯知名运维工程师袁旭东,讲述对象存储COS的发布演进过程,为各位开发者提供业务通用的高效高质变更方法。该业务通过提升灰度自测能力、优化流转时间和并发策略等方法实现提效,同时提出措施保障质量,并设置了一套可度量体系保障持续监控、调优,最终带动发布变更水平上新台阶。 ‍‍‍‍‍ 背景 1)背景诉求 现网发布变更对运维开发工程师来说是最繁重的工作。发布变更的概念、节奏等已经是老生

    04

    教你如何预测参与调节差异基因的转录因子

    KnockTF(http://www.licpathway.net/KnockTF/search.php)数据库就是基于这个目的构建的数据库。关于这个数据库,我在很久前的文章【这个网站提供了多种数据分析工具——增强子,非编码RNA转录信息等】中有提到,这个数据库收录了目前公共数据库当中敲减该转录因子后做的表达谱(芯片、二代测序)的数据,进而来反映这个转录因子变化后对于基因表达的影响。KnockTF不仅提供了感兴趣的TFs靶基因的全面基因表达信息,还收集了TFs上游通路信息以及下游靶基因的各种功能注释和分析结果,包括GSEA、GO富集、KEGG通路富集、层次聚类分析和差异表达分析。KnockTF进一步提供了有关TFs与启动子、超级增强子和靶基因典型增强子结合的详细信息。构建TF差异表达基因网络,对感兴趣的基因集进行网络分析,如子网络定位、拓扑分析和超几何富集。KnockTF将有助于阐明TF相关功能并挖掘潜在的生物学效应。

    02

    Cell | 映射单细胞的转录组向量场

    本文介绍由美国马萨诸塞州怀特黑德生物医学研究所的Xiaojie Xu和Jonathan S. Weissman以及匹兹堡大学计算与系统生物学系的Jianhua Xing共同发表在Cell的研究成果:基于单细胞测序(scRNA-seq)RNA速度和代谢标记预测细胞状态。作者提出了一个分析框架dynamo (https://github.com/aristoteleo/dynamo-release),推断绝对RNA速度,重建预测细胞命运的连续向量场,利用微分几何提取潜在的规则,最终预测出最佳的重编程路径和扰动结果。进一步分析了dynamo在克服传统基于剪接的RNA速度分析的基本限制方面的能力,表明其能在代谢标记的人类造血scRNA-seq数据集上精确估计速度。此外,微分几何分析揭示了驱动早期巨核细胞出现的机制,并阐明了PU.1-GATA1电路中的不对称调节。利用最小作用路径方法,dynamo可以准确预测驱动无数造血系统的转变,并最终由计算机干扰预测基因微扰引起细胞命运的转变。综上,Dynamo有助于开展细胞状态转变的定量分析和预测。

    02

    对差异表达基因执行转录因子富集分析

    我们获得的差异基因【学习:一文就会TCGA数据库基因表达差异分析,GEO数据库表达数据的提取以及limma包进行差异分析,TCGA数据库:GDCRNATools包下载数据、处理数据以及差异分析】,下游除了富集分析【学习:clusterProfiler包进行KEGG,GO,GSEA富集分析;FunRich数据库:一个主要用于基因和蛋白质的功能富集以及相互作用网络分析的独立的软件工具】等以外,如果我们想找到参与调控这些差异基因的转录因子,作为研究的上游机制,是一个思路。而很多转录因子预测的数据库是基于转录因子的Chip-seq的数据来进行构建的,这样的结果能说明某一个转录因子结合某一段序列,但是结合并不一定说明可能影响这个基因的表达,所以最好做一个这个转录因子导入/导出的表达数据来说明对于基因表达的影响。

    01
    领券