多变量预测 多元线性回归 对于多个特征量(Features),规定符号表示: n 特征的总数量 x^{(i)} 第i个训练样本的输入特征向量, i 表示的是一个索引(Index) x_j^i...第i个训练样本中特征向量的第j个值 此时的假设函数不再是单纯的 h_θ (x)=θ_0+θ_1 x 对于多个特征量,此时的假设函数为: h_θ (x)=θ^T x=θ_0+θ_1 x^{...x_n\end{bmatrix}n ,系数向量: θ=\begin{bmatrix}θ_0\\θ_1\\…\\θ_n\end{bmatrix} 有: h_θ (x)=θ^T x 这就是假设函数的向量形式...梯度下降算法在多元线性回归中的应用 对于假设函数: h_θ (x)=θ^T x=θ_0+θ_1 x^{(1)}+θ_2 x^{(2)}+…+θ_n x^{(n)} 和损失函数: J(θ_0,...θ_1,…,θ_n)=\frac{1}{2m} ∑_{i=1}^m(h_θ (x^{(i)} )−y^{(i)} )^2 此时的梯度下降算法: Repeat{ θ_j≔θ_j−α\frac{∂
其实所谓的多变量的线性回归(Linear Regression with multiple variables )本质上将与单变量的线性回归没啥差别。...,这就直接导致了范围大的那个变量下降的过慢。...多项式回归(Polynomial Regression ) 对于某些不能用线性回归的问题,我们有时候可以试着用多项式来进行回归拟合。...其实多项式回归完全可以看成是多变量的线性回归问题,因为我们完全可以把其中的x^i看成是第i个独立的变量,只不过他的值是由x推出来的而已。原理很简单,但是如果想不到那就头大了0.0。...公式法(Normal equation) 介绍 对于多变量的线性回归,除了用我们之前学的GD算法,我们其实还有另外一个直接套公式的算法(卧槽早说)。
单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np import
训练集用来估计模型; 验证集用来确定网络结构或者控制模型复杂程度的参数; 测试集则检验最终选择最优的模型的性能如何。...将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。 代价函数是解决回归问题最常用的处理手段。...对于学习优化算法,我们最终的目标,就是找到最优的处理算法。也是线性回归的目标函数。...梯度下降和代价函数的结合,以及推导,可以得出以下式子: 计算推导梯度下降算法的过程: 最后不断简化得到线性回归算法: 对于线性回归的代价函数,总是会出现一个弓状函数(凸函数) 图中的函数不存在什么局部最优...而线性回归的损失函数为凸函数,有且只有一个局部最小,则这个局部最小一定是全局最小。所以线性回归中使用批量梯度下降算法,一定可以找到一个全局最优解。
在之前的单变量线性回归问题中,我们是通过房屋的大小来作为预测房屋价格。但是我们知道了很多其他的变量,例如卧室的数量,楼层的数量,房子的年龄等。...42.png 那么之前的假设函数就会不再之前的函数表达式,取而代之的是: 43.png 下面是重新该写后的假设函数的形式: 44.png 为了简化方便,涉及初始的x_0=1, 45.png 以上就是多元线性回归...使用梯度下降法来处理多元线性回归问题 46.png 执行偏导数之后如下: 47.png 梯度下降法的应用实例——特征缩放的方法 特征缩放前后,相对应的代价函数的图形也会随之不同。...54.png 对于这样子的多元线性回归,做一下简单的修改来实现: 55.png 但是除了三次函数的拟合之外,采用二次函数,我们不希望说因为房子的面积的增加而导致房子的价格还下降。...所以就可以使用 56.png 由于根式的图像是上升的,最后趋于平缓状态,也是可以拟合所给的数据集。 正规方程 对于某些线性回归问题,会给我们更好的方式去得到未知参数θ的最优解。
参考链接: 线性回归(Python实现) 机器学习其实就是在学习模型的参数,最近学习吴恩达老师的机器学习视频,看完线性回归,自己用python手动实现了一下,整理一下写出来,希望可以帮到大家。 ...一、代码和数据获取 https://download.csdn.net/download/zpf123456789zpf/11223526 二、结果展示 三、分析 上图一散乱的数据,有两个参数...上图二为生成100个-20到20之间的随机数,有三个参数,因为是二次函数,初始化都为0,学习率为 0.00001,训练次数为500000次,结果如图,输出为三个参数的值,完全拟合,注意学习率不能过大...如果你有问题,欢迎给我留言,我会及时回复您的。
读者提问: 『阿常你好,想请教一下,回归测试如何确定测试范围,如何避免遗漏 ?』 阿常回答: 三种方式,可以结合起来使用。...1、产品 & 开发 助力 产品提供需求覆盖的范围,开发指出代码修改涉及的模块。...2、测试根据经验分析 如果开发修改的是模块A,回归测试时就覆盖模块A,根据测试经验判断模块 B 关联了模块A,回归测试时就覆盖模块A和模块B。...3、用例关联矩阵分析 用例中标识与之关联的其他用例,回归测试时,此用例回归,与之关联的其他用例也回归; 建立代码块和用例对应的矩阵,回归测试时,根据修改的代码块,找到对应的回归用例。...看完今天的分享对你是不是有所启发呢,有任何想法都欢迎大家后台私信阿常,一起探讨交流
长按扫描二维码关注我们 一、简要 今天分享的是研究者提出了基于统计自适应线性回归的目标尺寸预测方法。...然而,由于指数函数的性质,指数回归模型可以将损失函数的导数传播到网络中的所有参数中。研究者提出了统计自适应线性回归层来缓解指数回归模型的梯度爆炸问题。...看自监督学习框架如何助力目标检测 目标检测 | 丰富特征导向Refinement Network用于目标检测(附github源码) 三、框架分析 上图是YOLOv2 and YOLOv3的后处理过程。...研究者提出的统计值自适应线性回归模型进一步估计了各簇中目标的宽度和高度值的标准差。然后,设计了通过网络预测的目标的宽度和高度值的均值和标准差遵循学习数据集中存在的目标宽度和高度值的均值和标准差。...现有的YOLOv2, 随着对YOLOv3中用于目标大小预测的统计值自适应指数回归模型的修改,研究者重新定义了用于学习所提出的目标大小预测的统计值自适应线性回归模型的损失函数,所提出的损失函数如上。
前言 构建多元线性回归模型时,如果能够充分的使用已有变量,或将其改造成另一种形式的可供使用的变量,将在一定程度上提高模型精度及其泛化能力。...因为虚拟变量的原理其实非常简单,所以如何有趣且快速的理解原理并应用于实际的 Python 程序才是本文的侧重点。...从上表中,不难发现: 该名义变量有 n 类,就能拆分出 n 个名义变量 巧妙的使用 0 和 1 来达到用虚拟变量列代替原名义变量所在类别 接下来要做的就是将生成的虚拟变量们放入多元线性回归模型,但要注意的是...ols 函数(最小二乘法)进行多元线性回归建模 为原数据集的某名义变量添加虚拟变量的步骤: 抽出希望转换的名义变量(一个或多个) Python pandas 的 get_dummies 函数 与原数据集横向拼接...其实根据原理趣析部分的表格来看,如果房屋在C区,那等式中 A 和 B 这两个字母的值便是 0,所以这便引出了非常重要的一点:使用了虚拟变量的多元线性回归模型结果中,存在于模型内的虚拟变量都是跟被删除掉的那个虚拟变量进行比较
多特征的线性回归问题,被称为 多变量线性回归问题。 二、多变量梯度下降(Gradient Descent for Multiple Variables) ?...多变量的线性回归问题与单变量类似,由于特征数量从1变为n,所以需要更多的计算。其对比如下: ? 三、特征规范化(Feature Scaling) 由于现在有多个特征,且各个特征的取值范围有所不同。...首先,如何确认梯度下降正常工作。我们的目标是最小化 J(θ) ,并希望其在每一轮迭代中都减小,直至最后收敛: ?...五、特征以及多项式回归(Features and Polynomial Regression) 现在我们了解了多变量线性回归问题。...在本节中,我们将讨论特征的选择以及如何用这些特征获得好的学习算法,以及一部分多项式回归问题,它可以使用线性回归的方法来拟合非常复杂的函数,甚至非线性函数。 以预测房价为例。
多元线性回归 5.2 多元梯度下降法 ?...经验:α 值之间间隔为3倍(而非10倍) 5.5 特征和多项式回归 与选择特征的想法密切相关的一个概念,被称为多项式回归。 ? 那么我们如何将模型与数据进行拟合了?...使用多元线性回归的方法,我们可以对算法做一个简单的修改来实现它 ?...特征向量 x_1 为 房屋面积 特征向量 x_2 为 房屋面积的平方 特征向量 x_3 为 房屋面积的立方 然后再应用线性回归的方法,我们就可以拟合这个模型。 注意,如果你像?...目前为止,我们一直使用的线性回归算法是“梯度下降法”。 正规方程法 直观理解 J 是 Θ 的一个函数,Θ 为实数: ?
Machine Learning笔记(二) 单变量线性回归 注:本文内容资源来自 Andrew Ng 在 Coursera上的 Machine Learning 课程,在此向 Andrew Ng 致敬...m: 训练样本个数 x: 输入变量/特征 y: 输出变量/目标变量 (x(i), y(i)): 第i个训练样本 对于给定的训练集(Training Set),我们希望利用学习算法(Learning Algorithm...由于假设函数为线性函数,且训练样本中输入变量只有一个特征(即尺寸),将此类问题称之为 单变量线性回归(Linear Regression with One Variable,或 Univariate Linear...如上图所示,hθ(x) 表示一条关于 x 的直线, θ0 和 θ1 是它的两个参数,要求 hθ(x),就必须确定这两个参数。 那么,如何选择这两个参数呢?...七、线性回归梯度下降(Gradient Descent for Linear Regression) 现在,了解了梯度下降与线性回归,现在需要将它们进行结合,以求解本文中的房价问题的单变量线性回归模型。
当我们设计一个机器学习算法时,第一个需要做的是:决定怎么表达这个假设函数h 一种可能的表达方式为: ? ,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。...这个模型叫做“线性回归”,这个例子是一元线性回归。这个模型的另一个名字“单变量线性回归” 2.2 代价函数 那么我们要如何选择θ_1和θ_2这两个参数。 ?...我要做的是:尽量减少假设的输出与房子真实价格之间的差的平方。 线性回归的代价函数: ? m :训练样本数量 (?(?),?(?)) 代表第?...梯度下降是很常用的算法,它不仅被用在线性回归上,还被广泛应用于机器学习的众多领域。 用梯度下降法最小化其他函数,而不仅仅是最小化线性回归的代价函数J....线性回归算法 = 平方代价函数 结合 梯度下降法 线性回归的梯度下降 ? 我们要做的就是,将’梯度下降法’应用于’平方差代价函数’,以最小化’平方差代价函数’ ? ? ?
回归的基本思路 在模型领域,解释性较好的模型毋庸置疑就是回归。回归模型主要能做两件事情,一是用模型去体现事物间的关系,即解释模型变量间的关系;二是用模型进行预测。...如下图所示,回归建模的工作流程即 将客观现实转化为数据后进行建模,终极目标是用数学模型将事物的来龙去脉解释清楚,作为数据分析师,讲故事的能力真的非常重要。 ?...简单线性回归模型的假定 简单线性回归模型有下面几个假定: 1、线性假定 所谓线性假定指构建模型时需将模型构建成线性的模式,例如Y=b0+b1x2+e,虽然是x2的形式,但可将x2的整体看做X。...单变量线性回归模型SAS示例 单变量线性回归模型一般形式为:Y=b0+b1X1+e。其中Y为因变量,X为自变量或预测变量,e为扰动项,b为模型的系数。...如下示例建模背景为针对消费与收入构建单变量线性回归模型,下面为SAS实现代码以及我对模型结果的解读思路: PROC REG DATA=XUHUI PLOTS(ONLY)=ALL; Linear_Regression_Model
线性回归假设 线性回归的基础是五个关键的假设,所有这些都需要保持模型产生可靠的预测。具体地说: 线性:输入和输出变量之间的关系是线性的。...这样就很难解释模型的系数,也很难确定它们的统计意义,因为模型将两个不同名称下的一个变量,跨两个单独的输入变量的影响分割开来。...好吧,实际上,通过设计现有输入变量的函数(包括幂、对数和变量对的乘积)的新特性,可以使用线性回归来拟合数据,而不是直线。...例如,在上面的例子中,我们可以创建一个新的变量,z = x²然后符合我们的线性回归模型使用x和z作为输入变量。...以上是今天更新的内容,是如何规避陷阱的两个方案,另外两个方案,我会继续更新。
这篇论文提出了新的边界框回归损失针对目标框的移动以及位置方差进行学习,这种方法在几乎不增加计算量的基础上提高不同结构定位的准确性。...1.研究背景 在大规模目标检测数据集中,一些场景下目标框的标注是存在歧义的,这种情况如果直接使用以前目标检测的边界框回归损失,也即是Smooth L1Loss会出现学习很不稳定,学习的损失函数大的问题。...特别的,为了捕捉边界框预测的不确定性,首先将边界框的预测以及ground truth框分别看做高斯分布函数和狄克拉分布函数。则新定义的回归损失可以看作是预测分布和真实分布之间的KL散度。...3.2 基于KL损失的边界框回归 论文目标定位的目标是通过在N个样本最小化 和 之间的KL散度来评估 ,如公式(4)所示: 使用KL散度作为边界框回归的损失函数Lreg。分类损失Lcls保持不变。...意义 综上,大规模目标检测数据集中的不确定性会阻碍最先进的目标检测算法的性能。分类置信度并不总是与定位置信度密切相关。本文提出了一种新的具有不确定性的边界盒回归损失方法,用于学习更精确的目标定位。
在上一部分中,我们学习了线性回归的概念和规避线性回归陷阱的前两个解决方案,今天我们继续学习剩余的两个方案。...前文回顾:如何规避线性回归的陷阱(上) 使用变量变换或广义线性模型 线性回归假设输出变量来自正态分布。也就是说,它是对称的,连续的,并且定义在整个数轴上。 实际上,违反后两个特征并不是什么大事。...在不转换输出变量的情况下,将线性回归模型拟合到此数据集,然后根据输出变量的拟合值绘制残差,得到以下残差图: # Fit linear regression non_norm_model = smf.ols...如果我们尝试用线性回归模型来拟合这些数据,使用年和月作为我们的输入变量,我们将得到如下所示的红线,这条红线对我们的数据的拟合不太理想: # Create year and month variables...对于回归问题,通常最简单的模型是线性回归模型。然而,在许多情况下,违反一个或多个严格的线性回归假设会使使用此模型不合适。
关于回归的知识点也许不一定比参数检验,非参数检验多,但是复杂度却绝对在其上。回归主要包括线性回归,非线性回归以及分类回归。...对于线性回归的定义主要是这样的:线性回归,是基于最小二乘法原理产生古典统计假设下的最优线性无偏估计。是研究一个或多个自变量与一个因变量之间是否存在某种线性关系的统计学方法。...这个什么叫线性回归,什么叫最小二乘法,在在高中数学课本里边就有涉及。我就不重复了嘿嘿。本质上讲一元线性回归是多元线性回归的一个特例,因此我们就直接讨论多元线性回归了哈。...继续,确定。 结果的解释也说不上复杂。首先看模型汇总表的R方,这个值介于0和1之间,表示你的方程能解释你的模型的百分之多少,所以越接近1越好啦。然后要看方差分析表。...但是由于是高级教程,因此并没有提到如何设置虚拟变量。网上很多博客里边也没有提到这个问题。但是为了完整性,我还是想写一下吧(毕竟这个系列的文章没有数据转换这个内容)。
4 多变量线性回归(Linear Regression with Multiple Variables) 4.1 多特征(Multiple Features) 4.2 多变量梯度下降(...Plotting Data 5.5 Control Statements: for, while, if statement 5.6 向量化(Vectorization) 5.x 常用函数整理 4 多变量线性回归...线性回归只能以直线来对数据进行拟合,有时候需要使用曲线来对数据进行拟合,即多项式回归(Polynomial Regression)。...4.6 正规方程(Normal Equation) 对于一些线性回归问题来说,正规方程法给出了一个更好的解决问题的方式。...,发生这种问题的概率很小,通常由于 •特征之间线性相关 比如同时包含英寸的尺寸和米为单位的尺寸两个特征,它们是线性相关的 即 x1=x2*3.282。
TensorFlow实战–Chapter04单变量线性回归 使用tensorflow实现单变量回归模型 文章目录 TensorFlow实战--Chapter04单变量线性回归 监督式机器学习的基本术语...标签和特征 训练 损失 定义损失函数 模型训练与降低损失 样本和模型 线性回归问题TensorFlow实战 人工数据生成 利用matplotlib绘图 定义模型 模型训练 创建会话,变量初始化 迭代训练...监督式机器学习的基本术语 标签和特征 训练 损失 定义损失函数 模型训练与降低损失 样本和模型 线性回归问题TensorFlow实战 人工数据生成 import warnings warnings.filterwarnings...TensorFlow变量的声明函数是tf.Variable tf,Variable的作用是保存和更新参数 变量的初始值可以是随机数、常数,或是通过其他变量的初始值计算得到 # 构建线性函数的斜率,变量...2 w = tf.Variable(1.0, name="w0") # 构建线性函数的截距,变量b b = tf.Variable(0.0, name="b0") # pred是预测值,前向计算 pred
领取专属 10元无门槛券
手把手带您无忧上云