确定一个点是否位于3D空间中的多边形内部是一个复杂的问题,因为3D空间中的多边形可以是任意形状和大小,并且可能位于不同的平面上。下面是一个基本的方法来确定一个点是否位于3D空间中的多边形内部:
import numpy as np
def compute_normal(v1, v2, v3):
edge1 = v2 - v1
edge2 = v3 - v1
normal = np.cross(edge1, edge2)
return normal / np.linalg.norm(normal)
def point_on_plane(point, plane_point, normal):
return np.isclose(np.dot(point - plane_point, normal), 0)
def project_point_to_plane(point, plane_point, normal):
return point - np.dot(point - plane_point, normal) * normal
def is_point_in_polygon_2d(point, polygon):
n = len(polygon)
inside = False
p1x, p1y = polygon[0]
for i in range(n + 1):
p2x, p2y = polygon[i % n]
if point[1] > min(p1y, p2y):
if point[1] <= max(p1y, p2y):
if point[0] <= max(p1x, p2x):
if p1y != p2y:
xinters = (point[1] - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or point[0] <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def is_point_in_3d_polygon(point, polygon):
if len(polygon) < 3:
return False
# Compute the normal of the polygon plane
normal = compute_normal(polygon[0], polygon[1], polygon[2])
# Check if the point is on the plane of the polygon
if not point_on_plane(point, polygon[0], normal):
return False
# Project the point to the plane of the polygon
projected_point = project_point_to_plane(point, polygon[0], normal)
# Convert the 3D polygon vertices to 2D
polygon_2d = [(v[0], v[1]) for v in polygon]
# Check if the projected point is inside the 2D polygon
return is_point_in_polygon_2d(projected_point[:2], polygon_2d)
# Example usage
polygon = [
np.array([0, 0, 0]),
np.array([1, 0, 0]),
np.array([1, 1, 0]),
np.array([0, 1, 0])
]
point = np.array([0.5, 0.5, 0])
print(is_point_in_3d_polygon(point, polygon)) # Output: True
np.isclose
函数来判断点是否在平面上。通过上述方法,可以有效地判断一个点是否位于3D空间中的多边形内部。
领取专属 10元无门槛券
手把手带您无忧上云