命令 , 可以查看 " Linux 内核位数 “ 和 ” 系统的软硬件信息 " ;
本文来说码,实打实地来看看计算机到底是如何启动的,先来看看 $xv6$ 启动的整体流程图,好有个大概认识:
内存管理这部分我没有集中在一起叙述,本节只是讲述物理内存如何组织管理,页表的内核部分如何创建的,与地址转换的在启动理论那一块儿说了,虚拟地址空间的用户部分在进程那儿叙述,堆内存管理也在进程那一块儿讲述。废话不多说来看本节内容:
我们所有写的程序都需要指定路径才能运行,就像这样:(程序里面是打印DLC循环)
在实现6.S081 Lab3过程中,需要对xv6页表有一定的掌握,因此写了这份源码分析。
有一个不会经常深入讨论但非常重要的方面是大内存页(Hugepages)和转译后备缓冲器(Translation Lookaside Buffer,TLB)的作用。在本系列文章中,我们将解释它们是什么,为什么它们重要,以及如何使用它们。我们将关注运行在64位X86硬件上的 Linux 操作系统,但是大多数观点也适用于其他体系结构。
Zircon 是 Google 新操作系统 Fuchsia 的内核,基于 LK - Little Kernel 演变而来。而 Little Kernel 前面一直作为 Android 系统的 Bootloader 的核心而存在。Zircon 在此基础上增加了 MMU,System Call 等功能。
虚幻引擎的业务逻辑开发基本上都是用C++/蓝图,当因为项目代码写的不好遇到Crash等问题时,如果不了解Native程序和引擎底层的一些机制,相比用C#开发业务的Unity或其他完全基于脚本虚拟机的游戏确实要难处理一些。因为业务和引擎代码本身都是基于C++,所以对于解决常规C++的Crash的方法虚幻引擎完全适用,除此外引擎在异常处理上相比于普通的C++程序还是提供了一些额外的方法和工具。本文主要介绍虚幻引擎在处理Crash时的一些做法和经验技巧。
每个程序都会收到一张环境表,环境表是一个字符指针数组,每个指针指向一个以’\0’结尾的环境字符串
纠正一直以来的对地址(指针)的层次上的错误观点!深入学习进程地址空间并克服Linux学习的第一道险关:4.1中的3:统一性!
近年来,各类恶意软件层出不穷,反病毒软件也更新了各种检测方案以提高检测率。其中比较有效的方案是动态沙箱检测技术,即通过在沙箱中运行程序并观察程序行为来判断程序是否为恶意程序。
关注我的同学,有很多都是学C++的同学,针对互联网后端岗位的话,C++可能没有太多优势,因为很少项目是用 C++ 做后端业务类型的开发了,主流的还是 java 和 go 后端。
如果可以直接访问,那么看到的地址就是物理地址,对于野指针,越界访问等问题则不能进行很好的控制,不能保证程序的独立性;当通过物理地址暴露,恶意程序通过物理地址进行读取或者修改数据,无法保证信息和数据安全;控制以及管理了访问的权限,以常量区不能的常属性来说,当常量定义出来的时候不就是修改数据了么,但是再次修改时,通过页表访问时,页表发现是常量区数据则拒绝修改的访问,以此保护了数据的常属性
多态是同一个行为具有多个不同表现形式或形态的能力。比如重写父类方法、重载同一方法等。
有三种事件会导致CPU搁置普通指令的执行,并强制将控制权转移到处理该事件的特殊代码上:
经过前三篇的认识,现在应该已经大致认识到了进程到底是什么,也认识了进程的状态,进程的优先级,环境变量等知识。今天我们继续学习,来一起认识地址空间!!!
大家在学习语言阶段应该都听到过内存的概念,那么大家脑子里的固态思维就有这样一张图:
!dd 加上!, ! dd 物理地址 专门用于显示物理地址的.
从上面那个现象可以看出,程序运行时所使用的内存其实并不是物理内存,而是虚拟内存。进程地址空间就是虚拟内存。
学习Linux系统编程一共要翻越三座大山 – 进程地址空间、文件系统以及多线程,这三部分内容很难但是非常重要;而今天我们将要征服的就是其中的第一座高山 – 进程地址空间。
由于内存数据是固定的一个大数组,而操作系统往往是运行多个程序,如果这些程序都直接访问内存数组的话,就出现了以下问题:
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
在用户的视角里,每个进程都有自己独立的地址空间,A进程的4GB和B进程4GB是完全独立不相关的,他们看到的都是操作系统虚拟出来的地址空间。但是呢,虚拟地址最终还是要落在实际内存的物理地址上进行操作的。操作系统就会通过页表的机制来实现进程的虚拟地址到物理地址的翻译工作。其中每一页的大小都是固定的。这一段我不想介绍的太过于详细,对这个概念不熟悉的同学回去翻一下操作系统的教材。
我们这次来根据dump动手来实际转化一个虚拟地址到物理地址,此次的地址不是线性地址映射。
最近一直在学习内存管理,也知道MMU是管理内存的映射的逻辑IP,还知道里面有个TLB。
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
对于 C/C++ 来说,程序中的内存包括这几部分:栈区、堆区、静态区 等,其中各个部分功能都不相同,比如函数的栈帧位于 栈区,动态申请的空间位于 堆区,全局变量和常量位于 静态区 ,区域划分的意义是为了更好的使用和管理空间,那么 真实物理空间 也是如此划分吗?多进程运行 时,又是如何区分空间的呢?写时拷贝 机制原理是什么?本文将对这些问题进行解答
许多年以前,当人们还在使用DOS 或者更古老的操作系统的时候,计算机的内存还非常小,一般都是以K 为单位进行计算的,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序。
【1】https://docs.microsoft.com/zh-cn/dotnet/standard/managed-code
1. 从程序的运行结果可以看出一些端倪,就是一个全局变量在地址并未改变的情况下,竟然出现了不同的值,这说明什么呢?首先一个变量肯定是只能有一个值的,但是地址只有一个,而变量的值却出现了两个,那么就必须说明一个结论,现在在内存中应该出现了两个变量了,因为一个变量是绝对不可能出现两个值的,所以我们可以推导出的结论就是内存中现在一定出现了两个全局变量global_value。
Linux进程地址空间是学习Linux的过程中,我们遇见的第一个难点,也是重中之重的重点。虽然它很难,但是,等我们真正懂得了这样设计的原理,我们不禁会感叹:这真的是太妙了。接下来,就让我么开启这一段学习之旅吧!
There are only two hard things in Computer Science: cache invalidation and naming things.
来源 | https://zhenbianshu.github.io/ 前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。 之前了解一些操作系统的概念,主要是毕业后对自己大学四年的荒废比较懊恼,觉得自己有些对不起计算机专业出身,于是在工作之余抽出时间看了哈工大在网易云课堂的操作系统公开课,自己也读了一本讲操作系统比较浅的书 《Linux内核设计与实现》,而且去年自己用 C
有了这个基本框架,我们对于语言的学习更加易于理解,但是地址空间究竟是什么❓我们对其并不了解,是不是内存呢?对于是什么这个问题,我们需要通过一个例子来进行切入,见一见现象
目前我们已进入保护模式,但依然会受到限制,虽然地址空间达到了4GB,但此空间是包括操作系统共享的4GB空间,我们把段基址+段内偏移地址称为线性地址,线性地址是唯一的,只属于某一个进程。在我们机器上即使只有512MB的内存,每个进程自己的内存空间也是4GB,这是指的虚拟内存空间。一直以来我们都是在内存分段机制下工作的,该模式下如果系统里面的应用程序过多,或者内存碎片过多无法容纳新的进程,则可能会出现进程需要等待,或无法直接运行的局面,而内存分页机制,理论上只要4KB内存就可以让程序运行下去。
目标: (1)创建Source Insight 工程,方便后面分析如何启动内核的 (2)分析uboot传递参数,链接脚本如何进入stext的 (3) 分析stext函数如何启动内核: (3.1
什么是命令行参数呢?首先我们得先知道,主函数是可以传参的!而这个传给主函数的参数就是命令行参数。
冯-诺依曼老爷子告诉过我们,算术逻辑单元和控制器单元组成的 CPU 负责进行运算以及程序流程的控制。运算所需要的指令和数据由 内存 来提供。
因为这是我被问的最频繁的问题,哎呀我的程序 OOM 了怎么办,我的程序内存超过配额被 k8s 杀掉了怎么办,我的程序看起来内存占用很高正常吗?
1. Linux物理内存三级架构 对于内存管理,Linux采用了与具体体系架构不相关的设计模型,实现了良好的可伸缩性。它主要由内存节点node、内存区域zone和物理页框page三级架构组成。
这篇文章是我在公司 TechDay 上分享的内容的文字实录版,本来不想写这么一篇冗长的文章,因为有不少的同学问是否能写一篇相关的文字版,本来没有的也就有了。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
《全民K歌内存篇1——线上监控与综合治理》 《全民K歌内存篇2——虚拟内存浅析》 《全民K歌内存篇3——native内存分析与监控》 一、简介 在多任务操作系统中,每个进程都拥有独立的虚拟地址空间,通过虚拟地址进行内存访问主要具备以下几点优势: 进程可使用连续的地址空间来访问不连续的物理内存,内存管理方面得到了简化。 实现进程与物理内存的隔离,对各个进程的内存数据起到了保护的作用。 程序可使用远大于可用物理内存的地址空间,虚拟地址在读写前不占用实际的物理内存,并为内存与磁盘的交换提供了便利。 Androi
上次介绍了环境变量:Linux:进程概念(四.main函数的参数、环境变量及其相关操作)
最近在工作中遇到一个mmap使用相关的问题,造成了一定的困惑,于是花了些时间补了下 mmap的功课,在这里分享给大家,错误和不足之处大家多指教。
在某些时候我们需要读写的进程可能存在虚拟内存保护机制,在该机制下用户的CR3以及MDL读写将直接失效,从而导致无法读取到正确的数据,本章我们将继续研究如何实现物理级别的寻址读写。
该文章介绍了如何通过 pmap 命令查看进程的虚拟地址空间使用情况,包括起始地址、大小、实际使用内存、脏页大小、权限、偏移、设备和映射文件等。通过分析这些信息,可以更好地了解程序运行时的内存使用情况,并找出潜在的内存泄漏、内存碎片等问题。
领取专属 10元无门槛券
手把手带您无忧上云