实验目的 该教程主要是面向新接触QQ频道机器人的开发者,通过教程可以学习到如何通过Python的官方SDK实现一些机器人的基本功能。 实验条件 请先 完成机器人注册和添加,获取机器人相关的信息。...ID标识,在完成机器人注册和添加的教程可以获取 机器人Token: 注册机器人后使用OpenAPI系统分配的密钥,在完成机器人注册和添加的教程可以获取,请注意不要外泄。...robot.py 的文件: touch robot.py 导入Token 和 AppID 请点击打开 config.yaml 文件,并填入自己机器人的 AppID 和 Token ,注意保存 : token...这时在频道内 @机器人 hello 指令就可以收到回复了 获取天气数据 首先,在 robot.py 中添加用于获取天气数据的函数,注意保存 : robot.py async def get_weather...下面函数中,当我们@机器人hello时收到机器人的私信。 私信中我们不使用ark,而是使用Embed。
该字典在第一次调用字符串驻留时,被延迟地初始化,并持有全部已驻留字符串对象的引用。 4.1 如何驻留字符串?...,令其键和值都使用相同的对象引用。...清理函数从interned字典中遍历所有的字符串,调整这些对象的引用计数,并把它们标记为NOT_INTERNED,使其被垃圾回收。...以下是函数PyObject_SetAttr的代码片段,该函数定义在文件object.c中,负责为 Python 对象设置新属性。...当使用任何字符串对象调用此函数时,该字符串对象将被驻留。以下是 sysmodule.c 文件的代码片段,它展示了在sys_intern_impl函数中的字符串驻留过程。
总共生成四个数据集: train_dev_df:从广告日志+广告操作文件+广告静态文件提取出的数据集中减去最后一天的数据 train_df:训练集,从广告日志+广告操作文件+广告静态文件聚合提取出的最全数据集...新广告是没有历史信息的,所以如何构造新广告的特征,对新广告进行历史和整体性的描述成了提分的关键。...源码中训练的入口为train.py,从该文件代码可知,经过特征工程后提取的特征类型有single_features、cross_features、multi_features、dense_features...从CIN.py代码看,cross_features和multi_features都会输入到CIN网络(_build_extreme_FM函数)中,然后dnn_input将CIN的输出、single_features...输出o不再是直接进入到Response,而是先与问题q进行加和,再与字典W相乘,经过一个softmax函数产生各个单词是答案的概率,借此可以使用交叉熵损失函数最为目标函数进行训练 以此为基础模块,以堆叠的方式可以实现多层端到端记忆网络
block 大小的计算方法由vllm/vllm/worker/cache_engine.py文件里CacheEngine类的get_cache_block_size函数实现,代码也很简单,简化后如下:...Block 数量如何计算 block 数量计算由vllm/vllm/worker/worker.py文件中Worker类的profile_num_available_blocks函数实现,该函数很简单,...3.1 逻辑 Block 定义和使用 逻辑 Block(LogicalTokenBlock)定义如下: # vllm/vllm/block.py class LogicalTokenBlock:...vllm/vllm/core/block_manager.py下的BlockSpaceManager是一个高级内存管理器,它在内存密集型计算任务(尤其是在使用GPU和CPU进行大规模数据处理的情况下)中管理逻辑数据块和物理内存块之间的映射...同时,它会更新序列的块表,以便在后续的训练过程中可以正确地访问这些块。 BlockSpaceManager还有很多其它的函数,为了避免文章累赘,这里不做详细介绍。
图解:最顶上是入口函数,入口函数所在源码文件,入口函数首行在源码文件的位置(行数);子框是核心逻辑,标明位置和被调用函数;红色箭头表示调用和被调用的关系。为了绘图简洁省略了大部分的参数。...上述权重加载函数的实现都在server/text_generation_server/utils/layers.py,不妨展开看一下TensorParallelRowLinear.load()的实现,同一个文件内的加载方法都大同小异...图解:最顶上是入口函数,入口函数所在源码文件,入口函数首行在源码文件的位置(行数);子框是核心逻辑,标明位置和被调用函数;红色箭头表示调用和被调用的关系。为绘图简洁省略大部分的参数。...封装,读者若感兴趣可分析TGI源码中的flash_attn.py 和paged_attention.py。..._init__()和forward()方法 第三步,给weigths.py里面的Weights类的初始化函数和成员函数(比如get_multi_weights_row)增加加载AWQ权重的逻辑 第四步,
总共生成四个数据集: train_dev_df:从广告日志+广告操作文件+广告静态文件提取出的数据集中减去最后一天的数据 train_df:训练集,从广告日志+广告操作文件+广告静态文件聚合提取出的最全数据集...新广告是没有历史信息的,所以如何构造新广告的特征,对新广告进行历史和整体性的描述成了提分的关键。...train.py,从该文件代码可知,经过特征工程后提取的特征类型有single_features、cross_features、multi_features、dense_features、kv_features...从CIN.py代码看,cross_features和multi_features都会输入到CIN网络(_build_extreme_FM函数)中,然后dnn_input将CIN的输出、single_features...输出o不再是直接进入到Response,而是先与问题q进行加和,再与字典W相乘,经过一个softmax函数产生各个单词是答案的概率,借此可以使用交叉熵损失函数最为目标函数进行训练 以此为基础模块,以堆叠的方式可以实现多层端到端记忆网络
python库,包括numpy/opencv等机器学习包•可以与安卓接口交互,使用手机硬件,比如摄像头 那么我们就以人脸识别App为例,看看如何简单几步搞定。...在电脑上使用ssh命令,就可以连接到手机。 注意:确保你的手机和电脑在同一局域网中。...文件,我们可以直接在电脑上运行。...这里原理就是使用adb连接手机,将kvmain.py推送到手机/sdcard/kv/kvmain.py路径。然后启动AirPort应用,就会加载这个路径下的python代码。...adb devices # 查看adb连接List of devices attachedABCDEFGHIJK device 3.将kvmain.py推送到手机/sdcard/kv/kvmain.py
具体的代码调用逻辑如下: fake hash 调用链路 根据已经生成的token_ids更新hash码代码调用逻辑如下,_promote_last_block这个函数,根据当前的logical_token_blocks...(包含了prefix和generated的),调用hash_of_block重新获取到new_hash并使用gpu_allocator.update_hash函数,更新last block的hash码。...一旦请求完成生成并返回给用户后,其对应的KV Blocks的实际ref_count为0,此时,就会被CachedBlockAllocator调用free函数,放到LRUEvictor中。...这时,就会调用evictor.evict(),从free_table中,取出ref_count为0的一个block给到新的请求进行使用。...KV Caching中的上下文语义的唯一性和正确性。
0x01使用 我们首先通过源码提供的LR算法看看如何使用。...update 函数如何被使用? 我们需要通过启动部分来继续研究。 0x02 启动 如前所述....2.1 python脚本 prun.py 2.1.1 主体函数 下面我们省略一些非主体代码,比如处理参数,逻辑如下: 处理参数; 利用 init_starter 得到如何启动server,worker,...当处理"update“或者"bupdate"类型请求时候,使用用户的update函数来对kv进行处理。 下面删除了部分非主体代码。...我们使用 paracel_read 来看,可以发现调用顺序是 先使用 ps_obj->p_ring->get_server(key) 得到本 key 对应的 参数服务器(就是从ring hash 中提取出来某一个参数服务器
class KeyOfT: 如何从T中获取key,这是很关键的,是我感觉最巧妙的一环,通过仿函数来适配不同类型,太妙了! class HashFunc:将key值转换为size_t的数组下标。...要设置为const变量 使用仿函数SetKeyOfT来从T中获取Key值 上层要通过给对应的哈希函数 大部分函数直接调用底层Hashtable中的函数就可以!...使用仿函数MapKeyOfT来从T中获取Key值 上层要通过给对应的哈希函数 大部分函数直接调用底层Hashtable中的函数就可以!...与上题条件相同,如何找到top K的IP?如何直接用Linux系统命令实现? 正确答案: 提取IP地址:使用awk或grep等工具从日志文件中提取IP地址。...正确回答: 方法一:分治法 + 哈希分桶 分治法:将每个文件分割成多个小文件,每个小文件的大小可以基于内存限制来决定。 哈希分桶:使用哈希函数将文件中的整数分布到多个桶中。
从OpenXLab平台下载的模型文件夹命名为1.8b,而从InternStudio开发机直接拷贝的模型文件夹名称是1_8b,为了后续文档统一,这里统一命名为1_8b。...lmdeploy chat -h 3.LMDeploy模型量化(lite) 本部分内容主要介绍如何对模型进行量化。主要包括 KV8量化和W4A16量化。...那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用KV8量化和W4A16量化。...以设置KV Cache占用比例为例,新建python文件pipeline_kv.py。...新建python文件gradio_llava.py。
base_url="http://0.0.0.0:23333/v1" # 指定API的基础URL,这里使用了本地地址和端口 ) # 调用client.models.list()方法获取所有可用的模型...4.2 Function call 关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。...完成调用后,模型会将函数的输出结果作为回答用户问题的依据。 首先让我们进入创建好的conda环境并启动API服务器。...让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py。...使用Function call功能让大模型完成一次简单的"加"与"乘"函数调用,作业截图需包括大模型回复的工具调用情况,参考4.2 Function call(选做) 这个作为 Function call
更新了以下内容: 自定义request请求日志 Allure报告添加request描述 猴子补丁扩展request fixtures支持多层级目录 FastAPI替代Flask 升级tep到0.9.5版本,使用...--tep-reports 3.猴子补丁扩展request 前面的“自定义request请求日志”和“Allure报告添加request描述”已经展示了如何通过猴子补丁扩展日志和扩展报告,您还可以为...request扩展更多想要的功能,只需要实现utils/http_client.py里面的request_monkey_patch函数即可: #!...文件自动导入,现在能支持多层级目录了: 测试代码test_multi_fixture.py: #!...文件中可以找到代码实现的简易Mock: #!
广和通4G L610 上云 与使用官方提供的ESP8266上云的方式一直,这里主要是移植L610和对于的串口,因为我一开始计划使用2个ESP8266,通过http通讯,并把数据通过WLAN 串口(LUART2...)传给MCU,所以与L610通讯的串口我使用的是E53的串口(LUART5) 在云端创建设备这里不再赘述,网上有很多链接可以查看学习,简单说下移植过程 1) 通过mqtt\_config\_gen.py...移植 其实做物联网的,使用RTOS肯定离不开kv的使用,所以当时移植了kv,用来准备给移植完屏幕使用,谁知道,屏幕没有移植成功,欸,,,,, 1)PIN配置和使用IO image.png...拷贝到项目source中 从tencentos tiny/commonts/fs/kv 拷贝出来 image.png 3) kv接口移植 image.png 4)...kv task实现和测试 image.png 5) 在main函数里调用 image.png 然后调用 osThreadCreate(osThread(kv_task), NULL
但 PyTorch 和 DeepSpeed 调用的其实都是 Huggingface 的 Transformers 包,PyTorch表示原生的 Transformer 包,DeepSpeed 表示使用了...建议根据请求量和最大的上下文长度,按实际情况调整。 3 模型量化 本部分内容主要介绍如何对模型进行量化。主要包括 KV Cache 量化和模型参数量化。...那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用 KV Cache 量化和 4bit Weight Only 量化(W4A16)。...共包括两步: 第一步:复制 calib_dataloader.py 到安装目录替换该文件:cp /root/share/temp/datasets/c4/calib_dataloader.py /root...最后再补充一点,量化模型和 KV Cache 量化也可以一起使用,以达到最大限度节省显存。
# Python使用def来定义一个函数,使用return来返回结果 def add(num=3): num = num + 1 return num # 调用函数 num = add...# 这时候调用函数就可以按照键值对的方式传参。...当文件作为主程序运行时,文件名开头可以随意,以数字,字母,下划线开始都可以,如:666_cai.py,cai.py,_cai666.py,cai1.py,_666cai.py;但是,当.py文件作为模块被导入到其他文件中调用时...,则作为模块的.py文件不能以数字开头命名,可以用下划线和字母开头,如:cai.py,_cai666.py,cai666.py,_666cai.py,若命名为666cai.py则会出错。...文件 add # 调用divide.py文件 divide # __init__.py 是在包加载的时候会进行执行,负责一些包的初始化操作,一般是空文件即可。
架构图 大致思路: 使用python-replication 消费MySQL的binlog,并对其进行处理后将生成的结果存到kafka,然后使用clickhouse_sinker去消费kafka数据,将最终结果存到...说明: 上图中,其中的clickhouse_sinker也可以使用自己编写python代码去实现对应的consumer功能,ClickHouse也可以使用databend或StarRocks之类的数据据库来替代...# -*- coding: utf-8 -*- """ binlogevent.event_type的数值和编码的对应关系: WRITE_ROWS_EVENT_V2 = 30 UPDATE_ROWS_EVENT_V2..., binlog文件名:{res1} ,位移: {res2}") stream = BinLogStreamReader( connection_settings...,从最新的binlog pos开始读取") stream = BinLogStreamReader( connection_settings=MYSQL_SETTINGS
在他的笔记里,介绍如何使用StreamingLLM框架在Mistral上运行推理。...StreamingLLM简介 使用LLM处理无限长度文本存在挑战。特别是,存储所有先前的Key和Value(KV)状态需要大量内存,并且模型可能难以生成超出其训练序列长度的文本。...StreamingLLM通过仅保留最近的标记和注意力汇聚,丢弃中间标记,来解决这个问题。这使得模型能够从最近的标记生成连贯的文本,而无需重置缓存 —— 这是以前方法中没有看到的能力。...以前的方法在对话长度超过训练长度时可能需要重置缓存(丢失最近的上下文),或者重新计算来自最近文本历史的KV状态,这可能是耗时的。 !nvidia-smi 安装 TensorRT-LLM !...dense_context_fmha - 在上下文阶段使用密集上下文fmha enable_pos_shift - 允许我们在KV缓存中使用位置以进行RoPE # Build the model model
在最新版的单独的MQX RTOS中还是没有支持kv系列的BSP包,如果是使用kv系列,需要自己移植BSP,可借助飞思卡尔的BSP克隆工具,非常方便,针对kv4x系列有一个单独的KSDK安装文件,KSDK1.1.0...用户ISR安装 用户自己开发的中断程序要能够得到正确调用,必须在系统初始化时候调用中断安装函数,_int_install_isr,将用户ISR安装到中断向量表,中断安装函数的参数有三个,中断向量号,中断服务例程入口地址...该函数位于内核源码包内的kernel文件夹下的int.c文件中,这个函数比较重要,可以参考飞思卡尔MQX参考手册仔细分析源码。...内核ISR函数 内核ISR函数采用汇编语言实现,该函数位于dispatch.S文件中,dispatch.S位于MQX安装源码包下的psp文件夹下的cortex_m文件夹下的core文件夹中的M4文件夹里...内核ISR的汇编代码,可参考ARM指令集分析源码,函数源码比较长,相信大家也不愿意看冗长的汇编源码,这里就不赘述了,这个函数要大体理解整个流程,内核是如何处理中断的。
领取专属 10元无门槛券
手把手带您无忧上云