首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

可变形卷积在视频学习中的应用:如何利用带有稀疏标记数据的视频帧

由于这些像素级别的标注会需要昂贵成本,是否可以使用未标记的相邻帧来提高泛化的准确性?具体地说,通过一种使未标记帧的特征图变形为其相邻标记帧的方法,以补偿标记帧α中的丢失信息。...学习稀疏标记视频的时间姿态估计 这项研究是对上面讨论的一个很好的解决方案。由于标注成本很昂贵,因此视频中仅标记了少量帧。然而,标记帧图像中的固有问题(如遮挡,模糊等)阻碍了模型训练的准确性和效率。...为了解决这个问题,作者使用可变形卷积将未标记帧的特征图变形为其相邻标记帧的特征图,以修补上述固有问题。偏移量就是带标记的帧和未带标记的相邻帧之间优化后的特征差。...这种可变形的方法,也被作者称为“扭曲”方法,比其他一些视频学习方法,如光流或3D卷积等,更便宜和更有效。 如上所示,在训练过程中,未标记帧B的特征图会扭曲为其相邻的标记帧A的特征图。...结论 将可变形卷积引入到具有给定偏移量的视频学习任务中,通过实现标签传播和特征聚合来提高模型性能。与传统的一帧一标记学习方法相比,提出了利用相邻帧的特征映射来增强表示学习的多帧一标记学习方法。

2.8K10

Python 可视化视频课 - 1. Matplotlib 上

我把整套知识体系分成四个模块: Python 基础 数据分析:NumPy, Pandas, SciPy 数据可视化:Matplotlib, Seaborn, Bokeh, Plotly/Cufflinks...因此学会 Python 工具做可视化是一项非常重要的技能,在 Python 众多画图工具中,Matplotlib 一定是最早应该学习的。下图类比人类和 Matplotlib 画图三部曲。...容器 (containers) 类:图 (figure), 坐标系 (axes), 坐标轴 (axis) 和刻度 (tick) 基础类元素是我们想画出的标准对象,而容器类元素是基础类元素的寄居出,它们也有层级结构...图 → 坐标系 → 坐标轴 → 刻度 由上图看出: 图包含着坐标系 (多个) 坐标系由坐标轴组成 (横轴 xAxis 和纵轴 yAxis) 坐标轴上面有刻度 (主刻度 MajorTicks 和副刻度...在坐标轴和刻度上添加标签 在坐标系中添加线、点、网格、图示、标记和文字 在图中添加标题 理解了 Matplotlib 里面的绘图逻辑和元素后,再可以分别从不同维度 (深度和广度) 研究画图: 深度探索:

84510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。 下面是 ggplot 代码的简单示例。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    2.2K30

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。 下面是 ggplot 代码的简单示例。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    2.1K30

    8个流行的Python可视化工具包,你喜欢哪个?

    基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。 下面是 ggplot 代码的简单示例。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    2.6K40

    8个流行的Python可视化工具包,你喜欢哪个?

    基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。 下面是 ggplot 代码的简单示例。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    2.2K20

    Matplotlib库

    图表属性设置 在使用 Matplotlib 时,可以对图表的各种属性进行详细设置,例如: 设置图片大小和分辨率 描述信息,比如 x 轴和 y 轴表示什么 调整刻度的间距 线条样式(颜色、粗细等) 5....使用示例 下面是一个简单的示例代码,展示了如何使用 Matplotlib 绘制一个折线图: import matplotlib.pyplot as plt # 创建数据 x = [1, 2, 3,...通过掌握其基本用法和高级技巧,你可以在数据分析和科学计算中获得极大的帮助。 Matplotlib中如何实现动画绘制?...FuncAnimation需要以下参数: fig:要添加动画的图形对象。 func:更新每一帧的函数。 frames:帧的数量或帧的数据。 init功能(可选):初始化每一帧的函数。...总结来说,Matplotlib提供了多种方法来实现多图并排显示,以满足不同的需求。 Matplotlib允许用户根据需求调整坐标轴的样式、刻度和标签等属性,以使图表更加清晰、易读。

    7510

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    y 标签 logx / logy : 在 x/y 轴上设置对数刻度 xticks / yticks : 设置轴上的刻度 color:为绘图定义颜色 colormap:可用于指定要绘制的多种颜色 hovertool...( figsize=(800, 450), # 图的宽度和高度 y="苹果", # y的值,这里选择的是df数据中的苹果列 title="苹果", # 标题 xlabel...="Date", # x轴标题 ylabel="Stock price [$]", # y轴标题 yticks=[0, 100, 200, 300, 400], # y轴刻度值...,它们是: plot_data_points:添加绘制线上的数据点 plot_data_points_size:设置数据点的大小 标记:定义点类型*(默认值:circle)*,可能的值有:“circle...per Unit [€]", title="Fruit prices per Year", stacked=True, # 堆叠柱状图 alpha=0.6) 默认情况下,x轴的值就是数据索引列的值

    3.8K30

    8个好看又实用 Python可视化工具包,再也不怕做不出图表了!

    我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    4.8K00

    这里有 8 个流行的 Python 可视化工具包,你喜欢哪个?

    基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。 下面是 ggplot 代码的简单示例。...为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。

    1.7K40

    8个流行的Python可视化工具包

    为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码: import pandas as pd from bokeh.plotting import figure...这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。...有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。

    62120

    超硬核的 Python 数据可视化教程!

    Seaborn 是一个基于matplotlib的高级可视化效果库,针对的点主要是数据挖掘和机器学习中的变量特征选取,seaborn可以用短小的代码去绘制描述更多维度数据的可视化效果图 其他库还包括 Bokeh...函数则根据第一步中选择好的图形,去找python中对应的函数。...第三步:参数设置,一目了然 原始图形画完后,我们可以根据需求修改颜色(color),线型(linestyle),标记(maker)或者其他图表装饰项标题(Title),轴标签(xlabel,ylabel...也可以使用参数明确的指定。 线型图还可以加上一些标记(marker),来突出显示数据点的位置。标记也可以放在格式字符串中,但标记类型和线型必须放在颜色后面。...:设定x轴刻度值 yticks:设定y轴刻度值 xlim,ylim:设定轴界限,[0,10] grid:显示轴网格线,默认关闭 rot:旋转刻度标签 use_index:将对象的索引用作刻度标签 logy

    5.1K51

    柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?

    每个分组中的柱子使用不同颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。 分组柱状图经常用于不同组间数据的比较,这些组都包含了相同分类的数据。...它可以形象地展示一个大分类包含的每个小分类的数据,以及各个小分类的占比,显示的是单个项目与整体之间的关系。...其中分类轴表示需要对比的分类维度,连续轴代表相应的数值,分为两种情况,一种是正向刻度值与反向刻度值完全对称,另一种是正向刻度值与反向刻度值反向对称,即互为相反数。...图2-39显示历年短跑冠军的时间跨度,由此可以看出人类体能极限越来越高了。 ? ▲图2-39 瀑布图 接下来,我们看看如何用Bokeh依次实现这些柱状图。 02 实例 柱状图代码示例如下所示。...笔者在实践中习惯用该图,不受纵向长度约束,适合数据较多的长图,例如全国各省某类型数据的比较。 ?

    3.4K10

    干货 | 柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?(附代码)

    每个分组中的柱子使用不同颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。 分组柱状图经常用于不同组间数据的比较,这些组都包含了相同分类的数据。...它可以形象地展示一个大分类包含的每个小分类的数据,以及各个小分类的占比,显示的是单个项目与整体之间的关系。...其中分类轴表示需要对比的分类维度,连续轴代表相应的数值,分为两种情况,一种是正向刻度值与反向刻度值完全对称,另一种是正向刻度值与反向刻度值反向对称,即互为相反数。...图2-39显示历年短跑冠军的时间跨度,由此可以看出人类体能极限越来越高了。 ? ▲图2-39 瀑布图 接下来,我们看看如何用Bokeh依次实现这些柱状图。 02 实例 柱状图代码示例如下所示。...笔者在实践中习惯用该图,不受纵向长度约束,适合数据较多的长图,例如全国各省某类型数据的比较。 ?

    4.2K21

    柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?(附代码)

    每个分组中的柱子使用不同颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。 分组柱状图经常用于不同组间数据的比较,这些组都包含了相同分类的数据。...它可以形象地展示一个大分类包含的每个小分类的数据,以及各个小分类的占比,显示的是单个项目与整体之间的关系。...其中分类轴表示需要对比的分类维度,连续轴代表相应的数值,分为两种情况,一种是正向刻度值与反向刻度值完全对称,另一种是正向刻度值与反向刻度值反向对称,即互为相反数。...图2-39显示历年短跑冠军的时间跨度,由此可以看出人类体能极限越来越高了。 ? ▲图2-39 瀑布图 接下来,我们看看如何用Bokeh依次实现这些柱状图。 02 实例 柱状图代码示例如下所示。...笔者在实践中习惯用该图,不受纵向长度约束,适合数据较多的长图,例如全国各省某类型数据的比较。 ?

    4.1K10

    什么是折线图?怎样用Python绘制?怎么用?终于有人讲明白了

    导读:数据分析时经常用到的折线图,你真的懂了吗?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制折线图?本文逐一为你解答。...折线图可以显示随时间(根据常用比例设置)而变化的连续数据,非常适用于显示在相等时间间隔下数据的趋势。...在折线图中,一般水平轴(x轴)用来表示时间的推移,并且间隔相同;而垂直轴(y轴)代表不同时刻的数据的大小。如图0所示。 ? ▲图0 折线图 02 实例 折线图代码示例如下所示。...这种通过图例、工具条、控件实现数据人机交互的可视化方式,正是Bokeh得以在GitHub火热的原因,建议在工作实践中予以借鉴。...第17行定义了x轴刻度的间隔以及中间刻度数,读者可以尝试将num_minor_ticks=10的显示效果与图8进行对比;第18行定义了y轴的数据显示格式。

    2.1K10

    如何在 Python 中使用 plotly 创建人口金字塔?

    我们将首先将数据加载到熊猫数据帧中,然后使用 Plotly 创建人口金字塔。 使用情节表达 Plotly Express 是 Plotly 的高级 API,可以轻松创建多种类型的绘图,包括人口金字塔。... the plot fig.show() 解释 我们首先导入库,包括用于创建图的 plotly.express 和用于将数据加载到数据帧中的 pandas。...然后,我们创建 px.bar() 函数,该函数将数据帧作为第一个参数,并采用其他几个参数来指定绘图布局和样式。 x 参数指定要用于条形长度的变量,条形长度是每个年龄组中的人数。...数据使用 pd.read_csv 方法加载到熊猫数据帧中。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组的 x 和 y 值。...方向设置为水平,并使用名称和标记参数为每条迹线指定名称和颜色。 将为绘图创建一个布局,其中包含 x 轴和 y 轴的标题和标签。 使用 go 创建图形。图法与两条迹线和布局。

    41610

    手把手教你用Bokeh进行可视化数据分析(附源码)

    数据可视化分析告诉你答案 上一篇文章一些朋友留言想要源码学习一下,应大家要求,本篇就分享一下如何使用Bokeh进行一系列炫酷的数据可视化分析。...步骤 2:确定可视化的呈现位置 在此步骤中,你将确定如何生成并最终查看可视化。...在此步骤中,你可以自定义比如标题,刻度线等的所有内容,你还可以设置一组工具,以便与你的可视化进行各种用户交互。 步骤 4:连接并绘制数据 接下来,你将使用Bokeh的渲染器(可视化图)来塑造数据。...size=12, color='black') # 将y轴标记变为百分比形式 pctFig.xaxis[0].formatter = NumeralTickFormatter(format='00.0%...这样可以看出球队在某一段时间内的具体表现如何,比如连续出现红色(失败),说明球队持续低迷,需要查找原因,看是失误多造成的,还是篮板少造成的,并根据这些数据对球员进行加强训练。 高亮 ?

    2.7K20

    如何在 Python 中的绘图图形上手动添加图例颜色和图例字体大小?

    Plotly Express 库创建散点图,其中包含来自熊猫数据帧 'df' 的 x 和 y 数据。...DataFrame() 方法,用于从数据字典创建数据帧。 然后使用 px.scatter() 方法创建散点图。数据帧中的“考试 1 分数”和“考试 2 分数”列分别用作 x 轴和 y 轴。...我们首先使用 px.data.tips() 函数首先将提示数据集加载到 Pandas 数据帧中。...要创建散点图,使用了 Plotly Express 中的 px.scatter() 函数,并将数据集中的“total_bill”和“tip”列指定为图的 x 轴和 y 轴。...“size”列被指定为标记的大小,“color”列被指定为变量,用于根据支付账单的人的性别为标记着色。绘图的标题设置为“提示数据”。

    83930
    领券