首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

1000+倍!超强Python『向量化』数据处理提速攻略

2 numpy.where() 语法很简单,就像Excel的IF()。 第一个参数是逻辑条件Numpy,它将为数组中的每个元素计算一个布尔数组。...其中,你的选择可以是标量,也可以是数组。只要它符合你的条件。 这是我们第一次尝试将多个条件从.apply()方法转换为向量化的解决方案。...根据经验,你需要为每个return语句设置n个条件,这样就可以将所有布尔数组打包到一个条件中,以返回一个选项。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!...4、使用来自其他行的值 在这个例子中,我们从Excel中重新创建了一个公式: 其中A列表示id,L列表示日期。

6.8K41

70个NumPy练习:在Python下一举搞定机器学习矩阵运算

答案: 4.如何从1维数组中提取满足给定条件的元素? 难度:1 问题:从arr数组中提取所有奇数元素。 输入: 输出: 答案: 5.在numpy数组中,如何用另一个值替换满足条件的元素?...难度:2 问题:在iris_2d的sepallength(第1列)中查找缺失值的数量和位置。 答案: 34.如何根据两个或多个条件过滤一个numpy数组?...答案: 35.如何从numpy数组中删除包含缺失值的行? 难度:3: 问题:选择没有nan值的iris_2d数组的行。 答案: 36.如何找到numpy数组的两列之间的相关性?...难度:2 问题:根据sepallength列对iris数据集进行排序。 答案: 45.如何在numpy数组中找到最频繁出现的值? 难度:1 问题:找到iris数据集中最常见的花瓣长度值(第3列)。...输入: 答案: 48.如何从numpy数组中获取n个值的位置? 难度:2 问题:获取给定数组a中前5个最大值的位置。 答案: 49.如何计算数组中所有可能值的行数?

20.7K42
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy 秘籍中文第二版:五、音频和图像处理

    clip() 该函数在给定最小值和最大值的情况下裁剪数组的值。 meshgrid() 此函数从包含 x 坐标的数组和包含 y 坐标的数组返回坐标数组。 tofile() 此函数将数组写入文件。...Mandelbrot + Lena') plt.show() 工作原理 在此示例中使用了以下函数: 函数 描述 linspace() 此函数返回范围内具有指定间隔的数字 choose() 此函数通过根据条件从数组中选择值来创建数组...中的“安装 SciPy”秘籍 图像模糊 我们可以使用高斯过滤器来模糊图像。...numpy.tile() 重复数组指定次数 scipy.io.wavfile.write() 从 NumPy 数组中以指定的采样率创建 WAV 文件 另见 可以在这个页面中找到 scipy.io文档...我们可以从这个页面中指定的列表中随机选择符合以下公式的频率: 此处,n是钢琴键的编号。 我们将键的编号从 1 到 88。我们将随机选择振幅,持续时间和相位。

    1.2K10

    再见了,Numpy!!

    ] # 输出:[100, 200, 300, 6, 7, 8, 9, 10] 这些代码展示了如何使用NumPy进行数组的切片访问和修改,以及如何利用布尔索引来选择满足特定条件的元素。...numpy.max() 找出数组中的最大值: 找出数组中的最大值 np.max(initial_array) # 输出:10 使用 numpy.cumsum() 计算数组元素的累积和: 计算数组元素的累积和...numpy.argmax(), numpy.argmin(): 查找数组中最大或最小元素的索引。 numpy.where(): 根据条件返回数组中的索引。...min_index = np.argmin(initial_array) # 输出:1 使用 numpy.where() 根据条件返回数组中的索引 查找数组中所有大于3的元素的索引 indices_greater_than...这些代码示例展示了深度副本和视图(浅副本)之间的区别:深度副本不影响原始数组,而视图的修改会影响原始数组。 14. 条件逻辑 numpy.where(): 用于基于条件选择数组元素。

    26510

    数据运算最优雅的5个的Numpy函数

    NumPy 库是数据分析三剑客之一,其作用于算术运算和统计运算。 我们在处理一些数据的场景下,需要用样板代码来解决问题。该如何选择呢?选择手动造轮子?还是运用现成的集成函数?...Numpy 的 argpartion 函数可以高效地找到 N 个最大值的索引并返回 N 个值。在给出索引后,我们可以根据需要进行值排序。...index array([ 6, 1, 10, 7, 0], dtype=int64)np.sort(array[index]) array([ 5, 6, 7, 9, 10]) 在Clip:如何使数组中的值保持在一定区间内...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。...我们可以使用 Numpy extract () 函数从数组中提取符合条件的特定元素。

    55110

    NumPy 索引和切片 用法总结

    您可能需要获取数组的一部分或特定数组元素,以便在进一步分析或其他操作中使用。为此,需要对数组进行子集、切片和/或索引。 如果您想从数组中选择满足特定条件的值,那么NumPy很简单。...>>> print(a[a < 5]) [1 2 3 4] 例如,还可以选择等于或大于5的数字,并使用该条件对数组进行索引。...2) & (a < 11)] >>> print(c) [ 3 4 5 6 7 8 9 10] 还可以使用逻辑运算符&和 |返回布尔值,指定数组中的值是否满足特定条件。...[[False False False False] [ True True True True] [ True True True True]] 还可以使用np.nonzero()从数组中选择元素或索引...有关Array的详细信息 如何创建array 添加、删除和排序元素 数组形状和大小 重塑array 如何将一维array转换为二维array(如何向数组添加新轴) NumPy索引和切片

    1.4K70

    Python数据分析与实战挖掘

    属性规约:属性合并或删除无关维,目标是寻找最小子集使子集概率分布尽可能与原来相同 属性规约常用方法 《贵州大数据培训》 合并属性 将就属性合并为新属性 —— 逐步向前选择 从空集开始,逐个加入最优属性,...直到无最优或满足条件 {}—— 逐步向后删除 从全集开始,每次删除最差属性,直到无最差或满足阈值 决策树归纳 利用决策树归纳能力进行分类,删除未出现的属性,即效果差的属性 主成分分析 用少量变量解释大部分变量...属性规约:属性合并或删除无关维,目标是寻找最小子集使子集概率分布尽可能与原来相同 属性规约常用方法 《贵州大数据培训中心》 合并属性 将就属性合并为新属性 —— 逐步向前选择 从空集开始,逐个加入最优属性...,直到无最优或满足条件 {}—— 逐步向后删除 从全集开始,每次删除最差属性,直到无最差或满足阈值 决策树归纳 利用决策树归纳能力进行分类,删除未出现的属性,即效果差的属性 主成分分析 用少量变量解释大部分变量...具有模糊权系数或输入信号是模糊两的神经网络,汇聚NN和模糊系统的有点 GMDH神经网络 也称多项式网络,网络结构在训练中变化 ANFIS自适应神经网络 NN镶嵌在一个全模糊的结构中,自动产生、修正、高度概括出最佳隶属函数和模糊规则

    3.7K60

    6-比较掩码布尔

    比较 布尔逻辑 本节介绍了使用布尔掩码来检查和操作NumPy数组中的值。...当您要基于某些条件提取,修改,计数或以其他方式操纵数组中的值时,就会出现屏蔽:例如,您可能希望对大于某个值的所有值进行计数,或者可能删除高于某个值的所有异常值阈。...挖掘详细数据 一种解决方法是手动解决这些问题:遍历数据,每当我们看到某个所需范围内的值时就增加一个计数器。出于本章所讨论的原因,从时间和计算结果的角度来看,这种方法都效率很低。...], [False, False, False], [ True, False, False]]) 现在要从数组中选择这些值,我们只需在此布尔数组上建立索引即可;这称为屏蔽操作...: #根据test的索引对应x数组选择True的值 In [71]: x[test] Out[71]: array([1, 0, 0]) 应用到上面统计下雨天的例子中 # construct a mask

    1.4K00

    深度图像边缘提取及转储

    上面鄙人已经教了你把图像转换成txt的文件,如何把保存在txt文件里面的边缘信息恢复成图像呢? 你会不? 1.从txt文件中读取边缘信息字符串,并将其转换为NumPy数组。...可以使用numpy.loadtxt函数将文件中的数据加载到NumPy数组中。 2。根据边缘信息数组的大小创建一个全零的数组,然后将边缘信息数组的值复制到全零数组的对应位置上。...可以使用numpy.zeros函数创建全零数组,并使用numpy.put函数将边缘信息数组的值复制到全零数组的对应位置上。 3.对全零数组进行插值操作,以生成与原始深度图像相同大小的边缘图像。...该函数首先使用numpy.loadtxt函数从文件中加载数据,并将其转换为NumPy数组。...然后,该函数根据指定的图像大小创建一个全零数组,并使用numpy.put函数将边缘信息数组的值复制到全零数组的对应位置上。

    1.5K10

    python数据科学系列:numpy入门详细教程

    numpy中支持5类创建数组的方式: 从普通数据结构创建,如列表、元组等 从特定的array结构创建,支持大量方法,例如ones、zeros、empty等等 empty接收指定大小创建空数组,这里空数组的意义在于未进行数值初始赋值...arange则不含终点 从磁盘读取特定的文件格式 从缓存或字符读入数组 从特定的库函数创建,例如random随机数包 以上方法中,最为常用的是方法1、2、5。...resize变形后的数组大小可以不和原数组一致,会自动根据新尺寸情况进行截断或拼接 正因为resize可以执行截断,所以要求接收确切的尺寸参数,不允许出现-1这样的"非法"数值;而reshape中常用-...numpy可以很方便的实现基本统计量,而且每种方法均包括对象方法和类方法: max,argmax分别返回最大值和最大值对应索引,可接收一个axis参数,指定轴线的聚合统计。...当然,维度相等时相当于未广播,所以严格的说广播仅适用于某一维度从1广播到N;如果当前维度满足广播要求,则同时前移一个维度继续比较。 为了直观理解这个广播条件,举个例子,下面的情况均满足广播条件: ?

    3.1K10

    入门 | 数据科学初学者必知的NumPy基础知识

    这篇教程介绍了数据科学初学者需要了解的 NumPy 基础知识,包括如何创建 NumPy 数组、如何使用 NumPy 中的广播机制、如何获取值以及如何操作数组。...接下来从 NumPy 数组开始。 NumPy 数组 NumPy 数组是包含相同类型值的网格。NumPy 数组有两种形式:向量和矩阵。严格地讲,向量是一维数组,矩阵是多维数组。...定位 NumPy 数组中的最大值和最小值 使用 max() 和 min() 函数,我们可以得到数组中的最大值或最小值: arr_2 = np.random.randint(0, 20, 10) arr...,而你需要弄清楚数组的形态,你想知道这个数组是一维数组还是二维数组,只需要使用 shape 函数即可: arr.shape 从 NumPy 数组中索引/选择多个元素(组) 在 NumPy 数组中进行索引与...two_d_arr[:2] #This grabs everything before row 2 ([[10, 20, 30], [40, 50, 60]]) 还可以使用 &、|、 和 == 运算符对数组执行条件选择和逻辑选择

    1.2K20

    入门 | 数据科学初学者必知的NumPy基础知识

    这篇教程介绍了数据科学初学者需要了解的 NumPy 基础知识,包括如何创建 NumPy 数组、如何使用 NumPy 中的广播机制、如何获取值以及如何操作数组。...接下来从 NumPy 数组开始。 NumPy 数组 NumPy 数组是包含相同类型值的网格。NumPy 数组有两种形式:向量和矩阵。严格地讲,向量是一维数组,矩阵是多维数组。...定位 NumPy 数组中的最大值和最小值 使用 max() 和 min() 函数,我们可以得到数组中的最大值或最小值: arr_2 = np.random.randint(0, 20, 10) arr...,而你需要弄清楚数组的形态,你想知道这个数组是一维数组还是二维数组,只需要使用 shape 函数即可: arr.shape 从 NumPy 数组中索引/选择多个元素(组) 在 NumPy 数组中进行索引与...two_d_arr[:2] #This grabs everything before row 2 ([[10, 20, 30], [40, 50, 60]]) 还可以使用 &、|、 和 == 运算符对数组执行条件选择和逻辑选择

    1.3K30

    【论文复现】融入模糊规则的宽度神经网络结构

    不同于直接将各个模糊子系统生成的模糊规则输出简单汇总为一个结果,模糊BLS选择将它们全部传输至一个增强层,进行更深层次的非线性处理,以此来保持输入数据的特性。...相反,所有模糊子系统生成的中间值会被整合成一个向量,并直接传递给增强节点进行非线性转换。随后,结合增强层的输出以及模糊子系统的去模糊化输出,共同生成模型的最终输出。...模糊广义学习系统的主要概念是将输入数据映射到一组模糊规则中,然后利用BLS算法学习和优化这些规则的权重和参数。这些模糊规则由模糊集及其对应的隶属函数组成,这些函数描述了输入和输出之间的模糊关系。...这里我就以MNIST数据集为例教大家如何利用这份代码来进行在公开数据集上的训练 准备数据 首先我们需要将想要用到的数据集导入到本地环境中, import ssl import torch from torchvision...数据输入模型进行训练 接下来我们可以选择多种方式将数据输入到模型中进行训练,我这里选择的是先将处理好的数据保存到csv文件中,然后输入的时候将其读出来导入环境中。

    13310

    解决AttributeError: ‘NoneType‘ object has no attribute ‘array_interface‘

    这个错误通常是由于数组对象为None引起的。在本篇文章中,我们将介绍这个错误的原因,并提供解决方法。错误原因当我们使用NumPy的函数或方法时,需要将数据传递给这些函数或方法进行处理。...下面是一些可能导致这个错误的情况以及相应的解决方法:检查数据源:如果你从文件、数据库或其他数据源中加载数据,并将其转换为NumPy数组,确保数据源不为空。...示例代码:解决AttributeError: 'NoneType' object has no attribute 'array_interface'在实际应用场景中,我们可以通过以下示例代码来演示如何解决...)以上示例代码分别演示了三种常见的解决方法,可以根据实际需求选择适合的方法来避免"AttributeError: 'NoneType' object has no attribute 'array_interface...根据具体情况,你可以在代码中进行适当的修改和调整。希望这些示例代码对你有所帮助!在Python中,​​None​​​是一个特殊的常量值,用于表示一个空的或缺失的对象。

    1.1K00

    图像分割应用:背景虚化!学会这招,又发现新大陆

    概述 介绍我们使用的深度学习模型和ReLu6 介绍如何使用深度学习生成模糊背景 介绍 ? 背景模糊效果是一种常见的图像效果,主要用于拍摄特写镜头上。...根据研究人员的说法,在最后一层中添加任何非线性函数都可能导致有用信息的丢失。 4. 实施 现在,我们对图像分割和使用的mobilenetv2有了一个大概的了解,接下来让我们来看一下如何去实现。...2.2:现在,我们读取输入图像并将其转换为numpy数组。...在内部,它基于一些统计概念(例如方差),以根据所选阈值找出类别。一旦选择了最佳阈值,则大于阈值的像素值将被视为白色像素,小于阈值的像素值将被视为黑色像素。...在输出中,将颜色应用于图像后,它包含两个唯一的像素值,即0,255。 我们将在接下来的步骤中应用背景模糊。 4.1:对原始图像应用模糊处理。 接下来,让我们将背景模糊效果应用于原始输入图像。

    1.4K20

    决策树之ID3、C4.5、C5.0等五大算法及python实现

    根据p值的大小决定决策树是否生长不需要修剪(与前两者的区别) 2、CHAID只能处理类别型的输入变量,因此连续型的输入变量首先要进行离散处理,而目标变量可以定距或定类 3、可产生多分枝的决策树 4、从统计显著性角度确定分支变量和分割值...模糊算法首先对连续属性进行模糊化过程,然后利用模糊集合的势计算模糊信自、增益,从而选择分裂属性。模糊克服了不能处理连续属性的弱点。但是,模糊与相同,都不能处理缺失属性值。...即: 然后,从Outlook下面出来三个树枝,最左边的Sunny,我们从Outlook是Sunny的实例数据中,找到信息增益最大的那一个,依次类推。...如果要保存图片,可以使用下面的语句: Image.open(BytesIO(graph.create_png())).save('roi.png') 如何选择最优路径的一些准则,笔者自己整理,勿怪: 紫色扎堆...5)决策树的数组使用的是numpy的float32类型,如果训练数据不是这样的格式,算法会先做copy再运行。

    2.6K20

    基本图像操作和处理(python)

    以上我们通过numpy的array()函数将Image对象转换成了数组,以下将展示如何从数组转换成Image对象 from PIL import Image import numpy as np img...直方图均衡化是指将一幅图像的灰度直方图变平,使变换后的图像中每个灰度值的分布概率都相同。直方图均衡化通常是对图像灰度值进行归一化的一个非常好的方法,并且可以增强图像的对比度。...直方图均衡化的变换函数是图像中像素值的累积分布函数(cumulative distribution function,将像素值的范围映射到目标范围的归一化操作)。...如果是打算模糊一幅彩色图像,只需要简单地对每一个颜色通道进行高斯模糊: from PIL import Image import numpy as np from scipy.ndimage import...sobel()函数的第二个参数选择 \(x\) 或 \(y\) 方向的导数,第三个参数保存输出变量。在图像中,正导数显示为亮的像素,负导数显示为暗的像素,灰色区域表示导数的值接近零。

    1.3K21

    基本图像操作和处理(python)

    以上我们通过numpy的array()函数将Image对象转换成了数组,以下将展示如何从数组转换成Image对象 from PIL import Image import numpy...直方图均衡化是指将一幅图像的灰度直方图变平,使变换后的图像中每个灰度值的分布概率都相同。直方图均衡化通常是对图像灰度值进行归一化的一个非常好的方法,并且可以增强图像的对比度。...直方图均衡化的变换函数是图像中像素值的**累积分布函数**(cumulative distribution function,将像素值的范围映射到目标范围的归一化操作)。...如果是打算模糊一幅彩色图像,只需要简单地对每一个颜色通道进行高斯模糊: from PIL import Image import numpy as np from scipy.ndimage import...在图像中,正导数显示为亮的像素,负导数显示为暗的像素,灰色区域表示导数的值接近零。

    1.1K00

    《机器学习》(入门1-2章)

    2.目标就是根据这些训练数据,寻找正确的特征与标记之间的对应关系。 3.在建立模型的过程中,监督学习将预测的结果与训练数据的标记结果作比较,不断的调整模型,直到准确率达到预期值。 ?...2.2Numpy的使用 导入Numpy的包import numpy 定义数组:a=numpy.array([1,2,3]) 获取数组长度:a.shape --输出不确定的一纬序列。...全0的二维数组:a=numpy.zeros([2,3]) 全1的二维数组:a=numpy.ones([2,3]) 全是某个数组:a=numpy.full([2,3],7) 生成单位矩阵(行列相同,对角线为...跳着获取索引:**a=a[::2]**表示间隔2个值获取。 自定义索引: b=numpy.array([1,2,4]) **a[b]**表示获取a中的第2,3,5位的数字。...条件分布:对于二维随机变量(X,Y),可以考虑在其中一个随机变量取得(可能的)固定值的条件下,另一随机变量的概率分布,这样得到的X或Y的概率分布叫做条件概率分布,简称条件分布。

    1.4K31
    领券