今天python-office发布了一个新功能: “1行代码,拆分你指定的1个Excel文件为多个Excel文件,以sheet命名。...详情见上文回顾 今天这个是反向操作:把1个文件里的多个sheet,拆分为不同的excel文件。如下图所示。...“这里大可放心,哪怕每个表的格式、内容不同,也完全可以无损拆分。这里用班级成绩合并举例,只是为了大家更好的理解。 2、1行代码实现 下面我们用一行代码,实现上面这个功能。...') #参数作用: # file_path = 将要拆分的Excel文件的位置,只能拆分xlsx后缀的Excel文件。...直接运行以上代码,就可以得到多个拆分后的excel文件啦~ 快去试试吧~ “如果有我没说清楚的,或者在使用过程中有问题,欢迎大家在评论区和我交流~
excelperfect Q:我有一个工作表,在单元格B1中输入有数值,我想根据这个数值动态隐藏行2至行100。...具体地说,就是在工作表中放置一个命令按钮,如果单元格B1中的数值是10时,当我单击这个命令按钮时,会显示前10行,即第2行至第11行;再次单击该按钮后,隐藏全部的行,即第2行至第100行;再单击该按钮,...则又会显示第2行至第11行,又单击该按钮,隐藏第2行至第100行……也就是说,通过单击该按钮,重复显示第2行至第11行与隐藏第2行至第100行的操作。...图1 如何实现? 注:这是在chandoo.org的论坛上看到的一个贴子,有点意思。...A:使用的VBA代码如下: Public b As Boolean Sub HideUnhide() If b =False Then Rows("2:100").Hidden
一行读取数据,第二行访问指定列 3,如何为数据框添加新的列?...(df) 4,如何对百分号的数值进行计算,再将其输出 需求情况:比较蛋疼的一个情况,电商很多数据都是百分比的,带有百分号,不能进行直接的计算,需要对其进行转换,然后再输出 解决方法: from pandas...2位数(精度可以调整) df['跳失率'] = f_str #重新赋值 5,如何获取导入的数据有几行和几列(数值) 需求情况:有的时候需要写一个通用脚本,比如随机抽样分析,程序自动获取行和列的话...需求情况:同样,十几列的数据,如果你想获取指定的输出数据,可以用方法2,但是如果想要获取的数据列比较多,只有1-2行不想要,这样就可以用指定删除列的方法了 解决方法: df.columns.delete...总结:整体来说的,python的语法在做数据分析还是相当简单的,很多的需求基本上就是一行代码搞定! 8,如何添加整行数据? df.append([1,2,34,,5])
分割成一个包含两个元素列表的列 对于一个已知分隔符的简单分割(例如,用破折号分割或用空格分割).str.split() 方法就足够了 。 它在字符串的列(系列)上运行,并返回列表(系列)。...,每列包含列表的相应元素 下面来看下如何从:分割成一个包含两个元素列表的列至分割成两列,每列包含列表的相应元素。...补充知识:pandas某一列中每一行拆分成多行的方法 在处理数据过程中,常会遇到将一条数据拆分成多条,比如一个人的地址信息中,可能有多条地址,既有家庭地址也有工作地址,还有电话信息等等类似的情况,实际使用数据的时候又需要分开处理...split拆分工具拆分,并使用expand功能拆分成多列 将拆分后的多列数据进行列转行操作(stack),合并成一列 将生成的复合索引重新进行reset保留原始的索引,并命名 将上面处理后的DataFrame...2列,对于无法拆分的数据为None 第二步:行转列 info_city = info_city.stack() 结果如下: 0 0 Irwinville 1 0 Glen 1 Ellen
我们将介绍一个如何使用该函数的实际应用程序,然后深入了解其后台的实际情况,即所谓的“拆分-应用-合并”过程。...注意,在read_cvs行中,包含了一个parse_dates参数,以指示“Transaction Date”列是日期时间类型的数据,这将使以后的处理更容易。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。...GroupBy对象包含一组元组(每组一个)。在元组中,第一个元素是类别名称,第二个元素是属于特定类别的子集数据。因此,这是拆分步骤。 我们也可以使用内置属性或方法访问拆分的数据集,而不是对其进行迭代。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。
本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...) 查看各种统计信息 df.T 转置 df.sort_index(axis=0, ascending=False),行索引降序排列 df.sort_values(by=“age”),某个属性的降序排列...、left on 用于连接的列名,默认是相同的列名 left_on \right_on 左侧、右侧DF中用作连接键的列 sort 根据连接键对合并后的数据进行排序,默认是T suffixes 重复列名,...拆分:groupby,按照某个属性column分组,得到的是一个分组之后的对象 应用:对上面的对象使用某个函数,可以是自带的也可以是自己写的函数,通过apply(function) 合并:最终结果是个S...型数据 如何找出每一种职业的平均年龄?
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...3 拆分代码并展示结果 拆分代码1: df[['merchant_r', 'merchant_l']].apply(frozenset, axis=1) 得到结果: ?...拆分代码2: df[['merchant_r', 'merchant_l']].apply(frozenset, axis=1).duplicated() 得到结果: ?
分享筛选功能之前,我们先分享如何提取某一列,某一行 一、提取DataFrame数据的某一行 1、显示前N行 使用head函数 ? 2、显示后N行 ? 3、显示任意某一行 ?...df['涨跌额']是选出涨跌额这一列 我们看到使用判断后返回的是一个布尔型的数据,是一个TRUE和FALSE的集合体。 那我们如何将这个布尔型的数据实现筛选的功能呢? ?...五、筛选失败的解决方案 成功的道路总是相同的,不成功的道路各有各的不同,本环节其实才是本篇文章的精华之一,另一个精华就是模糊筛选~~ 我们已经实现了根据涨跌额来实现筛选,那根据涨跌幅为正数进行筛选可以吗...df['涨跌幅'] = df['涨跌幅'].str.strip("%").astype(float)/100; 我们使用str.strip("%")函数将原始数据的百分号剔除,然后使用astype(float...费了九年二虎之力,终于分别实现了不同列的判断条件。 如何把两列混合在一起呢?如何以且关系进行组合判断呢? ?
点击文档名称,可以进入文档详情,查看拆分的chunk,可以看到普通的文本是按照token拆分,还未实现按照段落语义拆分,差评。...负责解析文档,并拆分为chunk....(只包含数字、字母、逗号、句号、冒号、分号、感叹号和百分号, 两个字符宽度小于width的一半 if chars[j]["text"] and chars[j + 1]["text"...return lines return ["\n".join(lines)] __extract_table_content函数接收一个表格对象(tb)作为输入,然后遍历表格的每一行,将每一行的单元格内容添加到一个列表...(df)中 然后 __compose_table_content 抽取表格内容,没仔细研究,大意是根据单元格的数据类型来判断列的类型,最后讲单元格拼接为字符串 总结 这里囫囵吐糟的review了下相关代码
=pd.DataFrame(a,index=line,columns=columns)df.to_csv('a.csv')在文件列表中可以找到刚生成的a.csv文件【读取csv文件】使用 read_csv...() 方法可以从csv 文件中读取数据到 DataFrameimport pandas as pddf = pd.read_csv('a.csv')df这里没有指定行索引,所以左边会自动生成0、1、2、...3、4的序号,而原本的行索引会被视为第一列数据我们可以使用index_col参数指定第一列为行索引import pandas as pddf = pd.read_csv('a.csv',index_col...sep参数进行设置常用的分隔符如下表分隔符逗号分号制表符空格符号','';''\t'' 'import pandas as pdimport numpy as npa=np.random.uniform...=pd.DataFrame(a,index=line,columns=columns)df.to_csv('b.csv',sep=';')可以看到,分隔符变成了分号记得这种情况下,在读取csv时也要指定分隔符为分号
但是单脑需要Java环境; -pdfplumber:是一个可以处理pdf格式信息的库。可以查找关于每个文本字符、矩阵、和行的详细信息,也可以对表格进行提取并进行可视化调试。...首先简单介绍一下pdfplumber库: -pdfplumber.pdf中包含了.metadata和.pages两个属性: .metadata是一个包含pdf信息的字典。....pages是一个包含页面信息的列表。 -pdfplumber.page的类中包含的主要的属性: .page_number 页码。 .width 页面宽度。 .height 页面高度。...,先将所有表格存放在一个DataFrame中,再根据序号拆分。...=[] #记录序号==1的行索引,用于后面的表格拆分 for i in range(len(df)): if df.ix[i,0]=='1': index.append(i) print ("
标签:pandas 本文研讨将字符串转换为数字的两个pandas内置方法,以及当这两种方法单独不起作用时,如何处理一些特殊情况。 运行以下代码以创建示例数据框架。...每列都包含文本/字符串,我们将使用不同的技术将它们转换为数字。我们使用列表解析创建多个字符串列表,然后将它们放入数据框架中。...()方法查看数据框架的前5行。...图2 然而,如果数据包含小数,int将不起作用。在这种情况下,我们需要将float传递到方法参数中。 图3 这个方法看起来很容易应用,但这几乎是它所能做的——它不适用于其余的列。...图4 图5 包含特殊字符的数据 对于包含特殊字符(如美元符号、百分号、点或逗号)的列,我们需要在将文本转换为数字之前先删除这些字符。
机器学习模型会根据你提供的数据执行,混乱的数据会导致性能下降甚至错误的结果,而干净的数据是良好模型性能的先决条件。...在本文中将列出数据清洗中需要解决的问题并展示可能的解决方案,通过本文可以了解如何逐步进行数据清洗。 缺失值 当数据集中包含缺失数据时,在填充之前可以先进行一些数据的分析。...2、数据操作错误 数据集的某些列可能通过了一些函数的处理。例如,一个函数根据生日计算年龄,但是这个函数出现了BUG导致输出不正确。 以上两种随机错误都可以被视为空值并与其他 NA 一起估算。...重复数据 当数据集中有相同的行时就会产生重复数据问题。这可能是由于数据组合错误(来自多个来源的同一行),或者重复的操作(用户可能会提交他或她的答案两次)等引起的。处理该问题的理想方法是删除复制行。...但是我们拆分的目标是保持测试集完全独立,并像使用新数据一样使用它来进行性能评估。所以在操作之前必须拆分数据集。 虽然训练集和测试集分别处理效率不高(因为相同的操作需要进行2次),但它可能是正确的。
第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...拿上面例子中的df来说,我们可以根据dtype对列进行分组: print(df.dtypes) grouped = df.groupby(df.dtypes,axis = 1) 可以如下打印分组: for...(df['key1']).describe() 关键技术: size跟count的区别是: size计数时包含NaN值,而count不包含NaN值。...Apply函数会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。 【例13】采用之前的小费数据集,根据分组选出最高的5个tip-pct值。...: 行名称 margins : 总计行/列 normalize:将所有值除以值的总和进行归一化,为True时候显示百分比 dropna :是否刪除缺失值 【例19】根据国籍和用手习惯对这段数据进行统计汇总
正文 基本用法 首先,让我们了解 read_csv() 的基本用法: import pandas as pd # 读取CSV文件 df = pd.read_csv('data.csv') print...(df.head()) 上述代码中,我们导入了 pandas 库,并使用 read_csv() 函数读取名为 data.csv 的文件,并输出其前五行数据。...', sep=';') 此代码指定了分隔符为分号 ;。...掌握这些技巧将大大提高我们处理数据的效率。 QA环节 Q1: 如何读取只包含特定列的CSV文件?...A1: 可以使用 usecols 参数指定列名: df = pd.read_csv('data.csv', usecols=['A', 'B']) Q2: 如何跳过文件的前几行?
当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。...生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...NA 默认情况下,结果中会忽略包含任何 NA 值的行。...我们可以将该值设置为 False 以包含 NA 的行数。...Pandas DataFrame.value_counts() 返回一个包含 DataFrame 中唯一行计数的系列。
如何查看数据集中的数据需要清洗了? 可以通过DataFrame的isna().sum()函数来统计所有的NaN的个数。...可以使用dropna()这个API把出现了NaN的数据行删掉 df_ads = df_ads.dropna()#把出现了NaN的数据行删掉 还有其他数据清洗的方法,需要针对具体的项目和数据集进行处理。...通常从一个包含了特征和标签的数据,构建特征数据集和一个标签数据集合,只需要从原数数据删除不需要的数据就行了。...比如: X=df_ads.drop['浏览量'],axis=1): Y=df_ads.浏览量 无监督学习不需要这样的步骤 6.拆分训练集、验证集和测试集合 从原数据集从列的维度纵向拆分成了特征集和标签集后...,还需要进一步从行的维度横向拆分。
相关链接>>>Excel与VBA,还有相关的Python,到这里来问我 其中有一个问题是: 如何用Python按照某列的关键词分拆工作表,并保留表中原有的公式。...图1 这里,假设这个工作表所在工作簿的名字是“拆分示例.xlsx”,并且根据列C中的分类来拆分工作表,有两个分类:建设项目和电商,因此应该拆分成两个工作表。此外,列F是计算列,其中包含有公式。...拆分到两个工作簿 代码很简单: import pandas as pd df = pd.read_excel(r'D:\拆分示例.xlsx') df1 = df.loc[df['分类'] == '建设项目...拆分到同一工作簿中的两个工作表 代码如下: import pandas as pd df = pd.read_excel(r'D:\拆分示例.xlsx') df1 = df.loc[df['分类'] =...我现在还不知道怎么在拆分后的工作表中保留原公式?
年 当必须预测未来的值时,年份作为输入特征并不是很有用。但是为了完整起见本篇文章还是将描述如何将其作为输入特征加以利用。 如果数据集包含多年,则可以使用年份。...如果 Pandas 有 DateTime 列,则可以按如下方式提取年份: df['year'] = df['date_time'].dt.year 从时间中提取特征 根据数据集的粒度,可以从 DateTime...此示例的目的是构建一个多类分类器,该分类器根据输入特征预测天气状况(由数据集的摘要列给出)。我计算了两种情况的准确性:有和没有 DateTime特征。 加载数据集 该数据集可在 Kaggle 上获得。...所有行的 Loud Cover 都是相同的,所以也可以删除它。...(C)'],axis=1,inplace=True) 训练测试拆分 我在 X 和 y 中拆分数据,然后在训练和测试集中: from sklearn.model_selection import train_test_split
领取专属 10元无门槛券
手把手带您无忧上云