首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...后来【瑜亮老师】也给了一个代码,如下:df.loc[[df.点击.idxmax()]],也算是一种方法。 顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40210

在Python中实现Excel的VLOOKUP、HLOOKUP、XLOOKUP函数功能

VLOOKUP可能是最常用的,但它受表格格式的限制,查找项必须位于我们正在执行查找的数据表最左边的列。换句话说,如果我们试图带入的值位于查找项的左侧,那么VLOOKUP函数将不起作用。...pandas提供了广泛的工具选择,因此我们可以通过多种方式复制XLOOKUP函数。这里我们将介绍一种方法:筛选和apply()的组合。...apply()方法代替for循环 事实证明,pandas提供了一个方法来实现上述要求,它的名称是.apply()。...默认情况下,其值是=0,代表行,而axis=1表示列 args=():这是一个元组,包含要传递到func中的位置参数 下面是如何将xlookup函数应用到数据框架的整个列。...df1['购买物品'] = df1['用户姓名'].apply(xlookup,args = (df2['顾客'], df2['购买物品'])) 需要注意的一件事是,apply()如何将参数传递到原始func

7.4K11
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas速查卡-Python数据科学

    刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数...(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数...加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1, df2],axis=1) 将df1中的列添加到df2的末尾(行数应该相同...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    Python数据清洗实践

    如果数列中超过90%的数据是“非数”,我们将其删除 这是我最近学到的一个有趣的功能。参数 thresh = N要求数列中至少含有N个非数才能得以保存。...所以,这意味着4列超过90%的数据相当于“非数”。这些对我们的结果几乎没有影响。 执行上述操作的另一种方法是手动扫描/读取列,并删除对我们的结果影响不大的列。...上面的屏幕截图显示了如何从字符串中删除一些字符 soupsubcategory是唯一一个数据类型为'object'的列,所以我们选择了select_dtypes(['object']),我们正在使用...lambda函数从该列中的每个 new_dataset = dataset.select_dtypes([‘object’]) dataset[new_dataset.columns] = new_dataset.apply...请查看以下链接,以查找有助于您进行Python数据科学之旅的其他资源: Pandas文档 Numpy文档 Python数据科学简介。对于那些以前没有数据科学知识的初学者来说,这是一门很棒的课程。

    2.3K20

    Python数据清洗实践

    如果数列中超过90%的数据是“非数”,我们将其删除 这是我最近学到的一个有趣的功能。参数 thresh = N要求数列中至少含有N个非数才能得以保存。...所以,这意味着4列超过90%的数据相当于“非数”。这些对我们的结果几乎没有影响。 执行上述操作的另一种方法是手动扫描/读取列,并删除对我们的结果影响不大的列。...上面的屏幕截图显示了如何从字符串中删除一些字符 soupsubcategory是唯一一个数据类型为'object'的列,所以我们选择了select_dtypes(['object']),我们正在使用...lambda函数从该列中的每个 new_dataset = dataset.select_dtypes([‘object’]) dataset[new_dataset.columns] = new_dataset.apply...请查看以下链接,以查找有助于您进行Python数据科学之旅的其他资源: Pandas文档 Numpy文档 Python数据科学简介。对于那些以前没有数据科学知识的初学者来说,这是一门很棒的课程。

    1.9K30

    pandas每天一题-题目5:统计空值数量也有多种实现方式

    这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...这个项目从基础到进阶,可以检验你有多么了解 pandas。 我会挑选一些题目,并且提供比原题库更多的解决方法以及更详尽的解析。 计划每天更新一期,希望各位小伙伴先自行思考,再查看答案。...上期文章:pandas每天一题-题目4:原来查找top n记录也有这种方式 后台回复"数据",可以下载本题数据集 如下数据: 数据描述: 此数据是订单明细表。...na 的数量: df['item_price'].isna().sum() 因此,只需要遍历每一列做同样的步骤即可: df.apply( lambda col: col.isna().sum...,表示新增列 推荐阅读: Python干货,不用再死记硬背pandas关于轴的概念?

    99441

    pandas 提速 315 倍!

    但如果从运算时间性能上考虑可能不是特别好的选择。 本次东哥介绍几个常见的提速方法,一个比一个快,了解pandas本质,才能知道如何提速。 下面是一个例子,数据获取方式见文末。...因此,如果你不知道如何提速,那正常第一想法可能就是用apply方法写一个函数,函数里面写好时间条件的逻辑代码。...二、pandas的apply方法 我们可以使用.apply方法而不是.iterrows进一步改进此操作。...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?

    2.8K20

    这几个方法颠覆你对Pandas缓慢的观念!

    因此,如果正确使用pandas的话,它的运行速度应该是非常快的。 本篇将要介绍几种pandas中常用到的方法,对于这些方法使用存在哪些需要注意的问题,以及如何对它们进行速度提升。...而如果我们将日期作为 str 类型就会极大的影响效率。 因此,对于时间序列的数据而言,我们需要让上面的date_time列格式化为datetime对象数组(pandas称之为时间戳)。...▍Pandas的 .apply()方法 我们可以使用.apply方法而不是.iterrows进一步改进此操作。...Pandas的.apply方法接受函数(callables)并沿DataFrame的轴(所有行或所有列)应用它们。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?

    2.9K20

    还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    因此,如果正确使用pandas的话,它的运行速度应该是非常快的。 本篇将要介绍几种pandas中常用到的方法,对于这些方法使用存在哪些需要注意的问题,以及如何对它们进行速度提升。...而如果我们将日期作为 str 类型就会极大的影响效率。 因此,对于时间序列的数据而言,我们需要让上面的date_time列格式化为datetime对象数组(pandas称之为时间戳)。...▍Pandas的 .apply()方法 我们可以使用.apply方法而不是.iterrows进一步改进此操作。...Pandas的.apply方法接受函数(callables)并沿DataFrame的轴(所有行或所有列)应用它们。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?

    3.5K10

    初学者使用Pandas的特征工程

    我们将讨论pandas如何仅凭一个线性函数使执行特征工程变得更加容易。 介绍 Pandas是用于Python编程语言的开源高级数据分析和处理库。使用pandas,可以轻松加载,准备,操作和分析数据。...合并连续变量也有助于消除异常值的影响。 pandas具有两个对变量进行分箱的功能,即cut() 和qcut() 。...使用qcut函数,我们的目的是使每个bin中的观察数保持相等,并且我们没有指定要进行拆分的位置,最好仅指定所需的bin数。 在case cut函数中,我们显式提供bin边缘。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。

    4.9K31

    这5个pandas调用函数的方法,让我的数据处理更加灵活自如

    最近咱们的交流群很活跃,每天都有不少朋友提出技术问题引来大家的热烈讨论探究。才哥也参与其中,然后发现很多pandas相关的数据处理问题都可以通过调用函数的方法来快速处理。...那么,今天我们就来介绍Pandas常用的几种调用函数的方法吧。 这里我们以曾经用于《对比Excel,用Pandas轻松搞定IF函数操作》的案例数据来演示~ 目录: 0....数据预览 1. apply 2. applymap 3. map 4. agg 5. pipe 0. 数据预览 这里的数据是虚构的语数外成绩,大家在演示的时候拷贝一下就好啦。...5. pipe 以上四个调用函数的方法,我们发现被调用的函数的参数就是 DataFrame或Serise数据,如果我们被调用的函数还需要别的参数,那么该如何做呢? 所以,pipe就出现了。...比如,我们需要获取总分大于n,性别为sex的同学的数据,其中n和sex是可变参数,那么用apply等就不太好处理。这个时候,就可以用到pipe方法来搞事了!

    1.2K20

    Pandas进阶修炼120题,给你深度和广度的船新体验

    Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。...,min函数,因为我们的数据中是20k-35k这种字符串,所以需要先用正则表达式提取数字 import re # 方法一:apply + 自定义函数 def func(df): lst = df....nunique() 50.提取salary与new列的和大于60000的最后3行 df1 = df[['salary','new']] rowsums = df1.apply(np.sum, axis...].take([1,10,15]) # 等价于 df.iloc[[1,10,15],0] 95.查找第一列的局部最大值位置 #备注 即比它前一个与后一个数字的都大的数字 tem = np.diff(np.sign...salary列开根号 df[['salary']].apply(np.sqrt) 114.将上一题数据的linestaion列按_拆分 df['split'] = df['linestaion'].str.split

    6.2K31

    精心整理 | 非常全面的Pandas入门教程

    如何安装pandas 2. 如何导入pandas库和查询相应的版本信息 3. pandas数据类型 4. series教程 5. dataframe教程 6. 小结 1....如何安装Pandas 最常用的方法是通过Anaconda安装,在终端或命令符输入如下命令安装: conda install pandas 若未安装Anaconda,使用Python自带的包管理工具pip...如何用全局变量作为apply函数的附加参数处理指定的列 df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master...如何将dataframe中的所有值以百分数的格式表示 df = pd.DataFrame(np.random.random(4), columns=['random']) # 格式化为小数点后两位的百分数...如何从series中查找异常值并赋值 ser = pd.Series(np.logspace(-2, 2, 30)) # 小于low_per分位的数赋值为low,大于low_per分位的数赋值为high

    10K53

    灰太狼的数据世界(三)

    我们工作中除了手动创建DataFrame,绝大多数数据都是读取文件获得的,例如读取csv文件,excel文件等等,那下面我们来看看pandas如何读取文件呢?...读取数据的方法提供如下几种: df.head(n):查看DataFrame对象的前n行 df.tail(n):查看DataFrame对象的最后n行 df.shape():查看行数和列数 df.info(...首先我们可能需要从给定的数据中提取出一些我们想要的数据,而Pandas 提供了一些选择的方法,这些选择的方法可以把数据切片,也可以把数据切块。...使用duplicated方法可以查找出是否有重复的行,使用drop_duplicated方法就可以直接将重复的行删除了。...apply函数可以对DataFrame对象进行操作,既可以作用于一行或者一列的元素,也可以作用于单个元素。apply最神奇的地方就是它里面可以调用函数,我们经常在apply里面写一些功能的匿名函数。

    2.8K30

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    一、简介 pandas提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。...2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。...可以看到这里实现了跟map()一样的功能。 输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。

    5K10
    领券