首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

层次聚类与聚类树

特征聚类是指根据对象的特征向量矩阵来计算距离或者相关性来实现聚类,例如各种层次聚类和非层次聚类。而图聚类则针对的是复杂网络数据,有随机游走、贪心策略、标签传播等算法等。...层次聚类 层次聚类(hierarchical clustering)就是通过对数据集按照某种方法进行层次分解,直到满足某种条件为止。在R中最常用的为stats包中的hclust()函数。...在生态学中Bray-Curtis距离矩阵一般使用方法"average"进行分析,其聚类树结构介于单连接和完全连接聚类之间。...这里以微生物群落抽平后的otu table数据为例进行分析,计算Bray-Curtis距离矩阵并进行UPGMA聚类: #读取群落数据并计算Bray-Curtis距离矩阵 data=read.table(...Bray-Curtis距离矩阵 data=read.table(file="sample.subsample.otu_table.txt", header=T, check.names=FALSE) rownames

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    扩增子图表解读2散点图:组间整体差异分析(Beta多样性)

    16S和宏基因组数据分析通常用到的是PCA分析和PCoA。原理有时间可以细读,但至少知道是用坐标间距离来反应样品间差异大小即可。...PCA和PCoA分析的区别:PCA分析是基于原始的物种组成矩阵所做的排序分析,而PCoA分析则是基于由物种组成计算得到的距离矩阵得出的。...在选择上,我习惯用Bray-Curtis距离,是因为这种方法在我研究的方面有比较好的结果。习惯上我是每种距离都做分析,那种能更好的解释科学问题就用那种。 看图实战(Result) 示例1....,故将最重要的发现用颜色标示,便于观察,可将第二关注的因素按形状标注;对于实验组大于7组时,颜色太多相近很难区分时,可以每组样品均标为不同颜色和形状来进一步对组进行区分。...(A) 采用CCA方法结合bray-curtis距离,分析以取样部分(compartment)条件下可显示各组最大差异投影平面;图顶部19.97% of variance (P的平面坐标系

    3.4K100

    一文学会PCAPCoA相关统计检验(PERMANOVA)和可视化

    方差分析就是对试验数据进行分析,检验方差相等的多个正态总体 均值是否相等,进而判断各因素对试验指标的影响是否显著;根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。...这些方法都通过一个样本间的距离矩阵或相似性矩阵构建ANOVA分析类似的统计量,然后对每组的观测结果进行随机置换来计算显著性P-value。...对于单因素分析,对数据唯一的假设条件就是观察指标数据存在可置换性 (exchangeability)。 下面我们再介绍如何应用PERMANOVA来检验PcOA等的结果的显著性。...它利用距离矩阵(如欧式距离、Bray-Curtis距离)对总方差进行分解,分析不同分组因素或不同环境因子对样品差异的解释度,并使用置换检验对各个变量解释的统计学意义进行显著性分析。...绘制一个PcOA的图看一下 多维排列 (Multidimensional scaling, `MDS`)是可视化多变量样品(如多个物种丰度、多个基因表达)相似性水平的一种方法。

    10.4K74

    解密微生物群中的相互作用

    经典的相关性计算方法和统计学方法,比如 Pearson、Spearman、Bray-Curtis、Kullback-Leibler dissimilarity、Benjamini-Hochberg's...基于相异度(dissimilarity)的方法 从 OTU 微生物组数据构建共现网络的最简单,最快的方法就是使用配对相异度指数,如 Bray-Curtis 或 Kullback-Leibler 。...也有研究人员基于此开发了一种集合流程,该流程结合了多个指数,例如相关性系数 (例如 Spearman )、相似性 (例如互信息) 和相异度 (例如 Kullback–Leibler),即 CoNet。...最近,已经有许多算法针对这两个问题来提高网络的准确性: SPIEC-EASI 将针对组成数据开发的数据转换与稀疏图形模型推理框架相结合。...Biol. 2012; 8: e1002687 CoNet 会同时计算 Pearson 和 Spearman 相关性以及 Kullback-Leibler 和 Bray-Curtis 相异性距离。

    2K40

    Mantel Test

    在使用Mantel Test分析环境因子与微生物群落结构之间的相关性时,通常对微生物群落OTU数据矩阵使用Bray-Curtis相异度(Bray-Curtis dissimilarity)来计算微生物群落结构之间的差异性...举个栗子,我想要对一个微生物数据矩阵、一个环境因子数据矩阵进行分析: 微生物OTU矩阵 环境因子矩阵 注意看,上方就是两个进行检验的矩阵,需要注意的是,两个数据矩阵的行索引应该是相互对应的。...""" 计算欧式距离(Euclidean)和BC(Bray-Curtis)距离 :param df: 输入矩阵 :param method: euc:欧氏距离(默认值)...;bc:Bray-Curtis距离;Others:Undefined :param redundant: 是否返回冗余距离矩阵?...其基本思路就是: 我想要证明数据矩阵A与数据矩阵B具有相关性; 那么我先假设数据矩阵A与数据矩阵B之间没有相关性,预先设定的检验水准为0.05,当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05

    5.4K55

    非度量多维排列 NMDS (Non-metric multidimensional scaling)分析

    多维排列 (Multidimensional scaling,MDS)是可视化多变量样品(如多个物种丰度、多个基因表达)相似性水平的一种方法。其基于距离矩阵进行一系列的排序分析。...如果是自己转换过的数据,比如hellinger转换后的数据不想再被进一步转换,可以设置autotransform = FALSE。如果输入的是距离矩阵,这一步也会直接跳过。...计算相异矩阵: 默认是Bray-Curtis,也通常是效果最好的。也可以选择vegdist输出的其它距离矩阵。对于非群体构成数据,可以用函数rankindex寻找自己的数据最合适的矩阵算法。...如果设置了previous.best参数,则以该参数传入的NMDS结果作为参考。随后metaMDS会设定多个随机起始点运行NMDS分析 (参数try和trymax可以设置最小和最大尝试次数)。...物种得分: 在最终NMDS结果中用函数wascores计算物种的加权得分。 实战NMDS分析 继续使用之前的测试数据(如何读入自己的数据见前文和抄代码的时候总是遇到原始数据应该长什么样的问题)。

    5.9K40

    微生物网络构建原理: SparCC, MENA, LSA, CoNet

    实现网络的技术及存在的问题 目前有两种实现网络的技术,第一种是基于相似性。 不管是基于abundance还是incidence的数据,都可以计算成对物种之间的相似度矩阵,并随机化数据反复计算。...其优点在于可以检测多个物种的关系;并可以预测不对称的关系(如偏利共生)。 缺点在于会出现假阳性、过拟合,且难以可视化。 ?...实现网络的工具 SparCC SparCC使用对数比例的方差来计算物种之间的相关性。 ? SparCC 对观测到的数据拟合狄利克雷分布,对物种的比例及相关性计算迭代计算多次。...基本计算原理和基于相似性的网络相同,只是将相似性按照时间进行了分割。...CoNet 基于组合效应(Ensemble-based)的网络 不同相关性计算方法(pearson,spearman,bray-curtis)可表达不同的关系,但是随着阈值的增加彼此的结果会趋同。

    5.6K44

    分析样本差异:β多样性距离

    群落结构指数也叫生态距离,其计算方法有Euclidean、Manhattan、Bray Curtis、Jaccard等各种各样的计算方法,其中几种计算方法如下所示: 可以看出,欧氏距离即为n维空间2点之间直线距离...这些计算方法的缺点就是赋予不同物种相同的权重,也即无论是稀有物种还是优势物种相差1%的丰度距离相同,但是在生态学里由1%到2%和由91%到92%显然是不同的,因此在生态分析中群落数据常用的一种是Bray-Curtis...=braycurtis, subsample=T, output=square) #其中参数output=square则结果生成的是方形的矩阵,也即距离矩阵,可以通过设置output参数获得 #使用计算系统发育多样性产生的...最终距离的计算结果也要结合数据标准化处理(见1.4.2.1数据预处理)来进行评断,例如经过卡方转换后的数据使用欧氏距离方法计算会得到卡方距离矩阵。...距离矩阵实际上代表的是对象之间的一种相异性(相似性),与数据标准化一样,距离矩阵只是一种数据转换方法,因此不需要进行假设检验。

    4.1K10

    物种Beta多样性PCoA分析

    PCoA分析 PCoA(主坐标分析)是一种基于距离矩阵的降维方法,用于将复杂的高维数据投影到低维空间(通常是二维或三维),以便更直观地展示样本之间的相似性和差异。...在物种Beta多样性分析中,PCoA通过以下步骤实现: 计算距离矩阵:选择合适的距离度量方法(如Bray-Curtis距离、Jaccard距离等)计算样本之间的相似性或差异。...分析意义 揭示群落差异:通过PCoA分析,可以直观地观察到不同样本或群落之间的物种组成差异,从而判断它们的相似性和差异性。...实际应用 在微生物群落研究中,PCoA分析常用于比较不同环境条件下的微生物群落结构,帮助研究人员理解环境变化对微生物群落的影响。...分析,适用于基于距离矩阵的数据降维: k=3:这个参数指定了输出的主坐标数量。

    17410

    ubiome类似数据dada2处理探索7

    , and Bray-Curtis),误差条表示基于100引导的估计的标准误差。...通过计算Spearman与金标准在微生物β多样性(未加权和加权的UniFrac和Bray-Curtis距离)和属水平相对丰度方面的相关性来评估性能。 ?...由于QIIME和mothur目前不支持基于非重叠读取的从头OTU聚类,因此我们在R1读取中运行QIIME和mothur。选择的参数设置与Hybrid-denovo的设置相当。...我们通过研究(1)在属水平上检测到的属的数目和未分类读物的百分比,(2)使用Bray-Curtis(BC)矩阵的Mantel相关性,以及(3)这些的类内相关系数(ICC)来评估性能 在超过90%的样本中观察到了核心...有趣的是,所有管道都可以产生相似的样本间关系,这是根据基于Bray-Curtis距离矩阵的Mantel相关系数测得的(表1)。数据集技术复制的可用性使我们能够使用类内相关系数比较不同的管道。

    97920

    Stegen(基于βNTI和RCbray)的群落构建方法

    利用系统发育周转率来推断生态过程需要OTUs的最佳生境条件中的“系统发育信号(phylogenetic signal)”,其中亲缘关系密切的类群的栖息地偏好比远亲的栖息地偏好更相似。...对于给定的一对群体,每个群体都被概率聚集999次。对于每一次迭代,Bray-Curtis dissimilarity被用于量化组成的转换,从而生成一个Bray-Curtis值的零分布。...延伸: RCbray利用矩阵进行打乱构建零模型,和物种数无关。 经典的群落构建判断标准: ? 延伸: 这里作者划分了两步,先看βNTI,再看RC。目前所有文章也都是按照这个来写的。...Link: https://www.frontiersin.org/articles/10.3389/fmicb.2015.00370/full 和上文同样的数据。...选择压力的变化(由环境条件的变化引起)是高度组分转换的主要原因,这种情况被称为“变量选择”。 PS:我猜本文的变量选择应该就是异质选择(Heterogeneous selection)。 ?

    15.2K97

    245热图展示微生物组的物种和功能丰度或有无、距离矩阵

    热图展示婴儿肠道1-24个月内OTU的丰度变化。 热图是使用颜色来展示数值矩阵的图形,图中每一个小方格都代表一个数值,不同的数值对应着不同的颜色。...可以依据聚类簇将热图分为多个板块,这样我们就可以在热图主体中直接获得不同聚类簇的信息,而不会分心去查看聚类情况,在大量数据聚集在一起的时候,非常好用。这个技巧在实战中分组规律明显时也常用。...按样本列添加分组注释的热图。 差异ASV+分组+分类展示 下面我综合利用上面的绘图技术,绘制一张差异比较结果的图。...距离矩阵+分组注释展示 Beta多样性的距离或相似矩阵也非常适合用热图展示,这里使用usearch计算的Bray-Curtis距离为例。...热图展示样本间的Bray-Curtis距离和聚类结果。 热图展示范围0-1之间的距离或相似性非常直观。图中对角度为自身相比距离为零为蓝色,越红则差别越大。具体的差异程度(距离)显示在小格中。

    2.9K01

    3分和30分文章差距在哪里?

    好的分析和可视化,可以提供大量的信息,同时兼顾简洁优雅。 今天我们抛开实验设计、方法和工作量等因素,仅从文章最吸引人的图片来讨论3分和30分(顶级)文章差距在哪里?...本图有13个子图分为6组,从6个不同的研究角度、分析方法和展示方式来对本图主题进行说明。...:B图上部从科水平基于Bray-Curtis距离进行PCoA分析,展示哈扎人和现代人区别;下部在PCoA1轴上再按季节时间顺序分组展示哈扎人菌肠随季节每年周期变化的规律; (C) 流图 (一种堆叠面积图...(A) 主图为基于Bray-Curtis距离的PCoA;上图为PCoA1轴坐标按地理分组绘制箱线图并排序,展示地区不同生活方式是菌群差异的最主要因素;左图为PCoA2轴坐标按年龄分组,尤其是存在有婴儿数据与成人差异较大要特别注意...本文特点是研究时间跨度更大,主要发现是肠道菌群随季节的变化,这在现代人中也是很难观察到的(可能多年前北方冬季纯靠储存土豆白菜过冬时,我的肠道菌群季节变化也很明显)。

    1.3K80

    segRDA: 分段冗余分析

    pwRDA允许将响应和解释变量之间的关系分解为多个部分。群落之间的断点由split-moving-window(SMW)来评估。SMW是一种简单而强大的方法,广泛用于检测有序数据集中的不连续点。...SMW:在数据序列的开头设置一个偶数大小的窗口,把窗口里的序列平均分成两半;计算每一半群落的中心;计算两半之间群落的不相似性;窗口沿着数据滑动一个位置;再重复上面的步骤直到序列末尾。...不相似性的峰值代表着群落断点的位置。 窗口大小的选择影响SMW分析的结果:小窗口产生许多表示小尺度变化的峰,而大窗口减少了峰的数量,平滑了小尺度变化。...通过将不同窗口大小的差异平均在一起,可以降低尺度效应。在本研究中,使用mean Z-score数(标准化的差异值)来检测群落断点。推荐Z值高于1.85的为显著的Z。...#yo:排序过的群落数据 #ws:窗口大小 #dist:不相似性矩阵的方法,默认bray #rand:随机化类型。

    1.4K31

    Microbiome: 画一个全球微生物网络图~

    方 法 从EMP数据库中下载90-bp Deblur BIOM table ,对丰度进行过滤,保留所有样本中至少有25个序列的exact sequence variants(ESVs)。...并去除丰度小于0.001%且只出现在少于10%样本中的ESVs。 采用Spearman相关性及Bray-Curtis 不相似性,RMT算法构建网络。...Generalist和specialist edges generalist edges:多个子网络中出现的边 specialist edges:只在一个子网络中出现的边 a,12个环境结果;b,不同物种的结果...;c,根据Jaccard距离得到的12种环境之间共发生关系相似性的网络 网络中心点(hubs) 每个子网络中识别出10个度最高的hubs。...周围饼图显示了12个子网络中负相关边关联顶点的分类概况。 总结: 这篇文章最大的优势我感觉就是样本量大,涵盖的生境多样。 网络基本情况、网络拓扑结构、hubs的分析属于网络中比较基本的分析。

    3.2K41

    请谨慎使用预训练的深度学习模型

    事实上,他们报告的准确率(截至2019年2月)通常高于实际的准确率。 当部署在服务器上或与其他Keras模型按顺序运行时,一些预先训练好的Keras模型会产生不一致或较低的精度。...如果在相同的条件下训练,它们不应该有相同的性能吗? 并不是只有你这么想,Curtis的文章也在Twitter上引发了一些反应: ? ? 关于这些差异的原因有一些有趣的见解: ?...首先,你需要检查你的数据与模型所训练的原始数据集(在本例中为ImageNet)有多相似。你还需要知道特征是从何处(网络的底部、中部或顶部)迁移的,因为任务相似性会影响模型性能。...2、你如何预处理数据? 你的模型的预处理应该与原始模型相同。几乎所有的torchvision模型都使用相同的预处理值。...在实践中,你应该保持预训练的参数不变(即,使用预训练好的模型作为特征提取器),或者用一个相当小的学习率来调整它们,以便不忘记原始模型中的所有内容。

    1.6K10

    Science组合图表解读

    非生态的大佬及吃瓜群众也被图形的美学及提供的丰富信息量所吸引。R小白的我也尝试着去还原文中的美图,但是一直进展缓慢。...于是乎,我决定以文献原文为基础,尝试结合 corrplot和 mantel test讲一个小故事。先结合图表简单介绍一下原文。题目:基于浮游动物群落揭示氨氮的生态阈值 ?...弄清楚了套路,接下来谈谈数据是怎么分析的,图是怎么画的吧。...此函数大大降低了工作量,只需作者整理好完整物种矩阵及各个subsample矩阵。当然也可以是多个独立的,但是都与同一环境因子矩阵相关联的物种矩阵,但是会损失一些可比信息。...,按原文图的表示,并不是按数值大小完全映射,而是划分范围后映射,此处对此时的我来说是知识盲区,又一次参考厚蕴老师的案例。

    1.8K30

    python 各类距离公式实现

    Curtis Distance) 读者可根据自己需求有选择的学习。...3)还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6)和(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。...4)在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵...优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。...布雷柯蒂斯距离(Bray Curtis Distance) Bray Curtis距离主要用于生态学和环境科学,计算坐标之间的距离。该距离取值在[0,1]之间。它也可以用来计算样本之间的差异。 ?

    7.8K20
    领券