首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中的单引号和双引号的区别和用法_python中打印输出的语句

python中的单引号和双引号的区别 今天在码代码的过程中突然想到这个问题,于是上网浏览了一下,发现在python中两种表达方式是没有区别的,两种表达方式都可以用来表达一个字符串。...但是这两种通用的表达方式,除了可以简化大家的开发,避免出错以外,还有一种好处,就是可以减转义字符的使用,使程序看起来更加简洁,更清晰。所以这里简单给大家分享一下,并举例说明。...1.包含单引号的字符串 假如我们想定义一个字符串my_str,其值为:I’m a student,则可采用如下两种方式,通过转义字符“\”进行定义 my_str='I\'m a student' Jetbrains...全家桶1年46,售后保障稳定 也可以不使用转义字符,利用双引号直接进行定义 my_str="I'm a student" 2.包含双引号的字符串 假如我们要定义一个字符串my_str,其值为:Jason...my_str='Jason said "I like you"' 因此通过这种方式,在合适的场景下采用单引号,或者双引号,就可以非常有效的避免转义字符的使用,并且可以使代码看起来更加简洁清晰。

1.8K20

用过Excel,就会获取pandas数据框架中的值、行和列

在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。 图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用pandas筛选出指定列值所对应的行

    布尔索引 该方法其实就是找出每一行中符合条件的真值(true value),如找出列A中所有值等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...这个例子需要先找出符合条件的行所在位置 mask = df['A'] == 'foo' pos = np.flatnonzero(mask) # 返回的是array([0, 2, 4, 6, 7])...标签索引 如何DataFrame的行列都是有标签的,那么使用loc方法就非常合适了。...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量的行,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内的行...df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)] 4、筛选出列值不等于某个/些值的行 df.loc[df['column_name

    19.2K10

    SQL中的行转列和列转行

    而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...由多行变一行,那么直觉想到的就是要groupby聚合;由一列变多列,那么就涉及到衍生提取; 既然要用groupby聚合,那么就涉及到将多门课的成绩汇总,但现在需要的不是所有成绩汇总,而仍然是各门课的独立成绩...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;...,然后将该列命名为course;第二个用反引号包裹起来的课程名实际上是从宽表中引用这一列的取值,然后将其命名为score。...这实际上对应的一个知识点是:在SQL中字符串的引用用单引号(其实双引号也可以),而列字段名称的引用则是用反引号 上述用到了where条件过滤成绩为空值的记录,这实际是由于在原表中存在有空值的情况,如不加以过滤则在本例中最终查询记录有

    7.2K30

    SQL 中的行转列和列转行

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...您可能需要将当前数据库的兼容级别设置为更高的值,以启用此功能。有关存储过程 sp_dbcmptlevel 的信息,请参见帮助。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。

    5.5K20

    列存储、行存储之间的关系和比较

    我们发现,按行存储的数据,最多能有5-10%的压缩比例; 2. 对于许多2K 和4K 的二进制数据页来说,为压缩和解压缩而增加的开销太大; 3. 在OLTP 环境中,大量读取和更新混杂在一起。...列存储法是将数据按照列存储到数据库中,与行存储类似; 3.1基于行的储存 基于行的存储是将数据组织成多个行,这样就能在一个操作中找到所有的列。...3.2基于列的存储 基于列的访问存在的缺点是载入速度通常比较慢,因为源数据在外部来源中是以行或者记录的形式表示的。这样做的优点是针对某个列中的值进行简单查询的速度非常快,需要的内部存储资源最少。...引擎也采用了一种基于列的处理方式,但是它还对值进行标记,以获得更高的速度和更好的数据压缩效果。它们使用一种专用的位向量方案,可以在压缩的状态下进行搜索。...面对海量的复杂查询, 如何使列存储技术扬长避短, 充分利用其查询优势, 成为了当今列存储领域的研究重点。查询优化在数据库领域一直占有重要的地位。

    6.7K10

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel(".....通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

    63700

    传统的行存储和(HBase)列存储的区别「建议收藏」

    1 为什么要按列存储 列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。...简单来说两者的区别就是如何组织表(翻译不好,直接抄原文了): Ø Row-based storage stores atable in a sequence of rows....下面来看一个例子: 从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。...所以它们就有了如下这些优缺点: 行式存储 列式存储 优点 Ø 数据被保存在一起 Ø INSERT/UPDATE容易 Ø 查询时只有涉及到的列会被读取 Ø 投影(projection)很高效...正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize) 3查询执行性能 下面就是最牛的图了,通过一条查询的执行过程说明列式存储

    1.4K20

    标签制作软件如何制作1行多列的标签

    例如常见的一行多列的标签该怎么设置呢?接下来就带大家学习下在标签制作软件中设置1行多列标签的方法: 1.打开标签制作软件,点击“新建”或者“文件-新建”,弹出文档设置对话框。...2.在文档设置-请选择打印机及纸张类型中,可以选择需要的打印机,纸张选择“自定义大小”宽度为标签尺寸加上边距及间距,高度为标签纸的高度。以下标签纸尺寸为自定义输入66*20。...点击下一步,根据标签纸的实际尺寸,设置一行多列的标签,这里以一行两列的标签为列。设置标签行数为1,列数为2。 点击下一步,设置页面边距,边距只需设置左右即可,标签纸的实际边距为1。...标签实际尺寸按31*20输入,这里可以看到标签间距默认为2,和实际尺寸相符。 再不设置其他位置及反向、画布及边线的情况下,可以点击完成。...以上就是在标签制作软件中设置一行多列标签的方法,标签制作软件中的纸张尺寸要跟打印机首选项里面的纸张尺寸保持一致,如果打印机首选项里面没有所需的尺寸,可以点击新建,新建一个标签尺寸,这里就不演示了,具体的操作可以参考条码打印软件怎么自定义设置纸张尺寸

    2.7K90

    重温SQL Server的行转列和列转行,面试常考题

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...您可能需要将当前数据库的兼容级别设置为更高的值,以启用此功能。有关存储过程 sp_dbcmptlevel 的信息,请参见帮助。...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。

    73010

    MySQL中的行转列和列转行操作,附SQL实战

    本文将详细介绍MySQL中的行转列和列转行操作,并提供相应的SQL语句进行操作。行转列行转列操作指的是将表格中一行数据转换为多列数据的操作。在MySQL中,可以通过以下两种方式进行行转列操作。1....是需要聚合的列,pivot_value_x则是需要转换为列的值。...是转换后的列的值。...在每个子查询中,pivot_column部分是列的名称,value_column则是该列的值。例如,假设我们有一个表格记录每月销售额,字段包括年份、月份和销售额。...结论MySQL中的行转列和列转行操作都具有广泛的应用场景,能够满足各种分析和报表需求。在实际应用中,可以根据具体的需求选择相应的MySQL函数或编写自定义SQL语句进行操作。

    18K20
    领券