KMeans是一种常用的聚类算法,用于将数据集划分为K个不同的簇。其基本思想是通过迭代更新簇中心,使得每个数据点到其所属簇中心的距离之和最小化。
并行化KMeans算法可以显著提高计算效率,特别是在处理大规模数据集时。通过并行化,可以同时处理多个数据点或簇中心,从而减少总的计算时间。
并行化KMeans适用于以下场景:
数据并行可以通过以下步骤实现:
import numpy as np
from sklearn.cluster import KMeans
from multiprocessing import Pool
def kmeans_parallel(data, k, n_jobs):
def kmeans_worker(data_chunk):
kmeans = KMeans(n_clusters=k)
kmeans.fit(data_chunk)
return kmeans.cluster_centers_
# Split data into chunks
chunk_size = len(data) // n_jobs
data_chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]
# Run KMeans in parallel
with Pool(n_jobs) as pool:
results = pool.map(kmeans_worker, data_chunks)
# Combine results
new_centers = np.vstack(results)
return new_centers
# Example usage
data = np.random.rand(1000, 10)
k = 3
n_jobs = 4
new_centers = kmeans_parallel(data, k, n_jobs)
print(new_centers)
簇中心并行可以通过以下步骤实现:
import numpy as np
from sklearn.metrics import pairwise_distances_argmin_min
def update_centers_parallel(data, labels, k):
centers = np.zeros((k, data.shape[1]))
for i in range(k):
points = data[labels == i]
if len(points) > 0:
centers[i] = np.mean(points, axis=0)
return centers
def kmeans_parallel(data, k, max_iters=100, n_jobs=4):
# Initialize centers
centers = data[np.random.choice(data.shape[0], k, replace=False)]
for _ in range(max_iters):
# Assign points to nearest center
labels = pairwise_distances_argmin_min(data, centers)[1]
# Update centers in parallel
new_centers = update_centers_parallel(data, labels, k)
# Check for convergence
if np.all(centers == new_centers):
break
centers = new_centers
return centers, labels
# Example usage
data = np.random.rand(1000, 10)
k = 3
centers, labels = kmeans_parallel(data, k)
print(centers)
通过以上方法,可以有效地并行化KMeans算法,提高大规模数据集的聚类效率。
领取专属 10元无门槛券
手把手带您无忧上云