此外,你可以通过传递参数来调整df.describe()的行为,例如include参数可以设置为'all'来包含所有列的统计信息,或者设置为'O'来仅包含对象列的统计信息。...df.info():主要用于提供关于DataFrame的一般信息,如列索引、数据类型、非空值数量以及内存使用情况。它不会提供数值型数据的统计摘要,而是更多地关注于数据集的整体结构和数据类型。...的合并操作 如何将新⾏追加到pandas DataFrame?...如果想要对每个分组应用多个函数,可以使用agg()方法,并传入一个包含多个函数名的列表,例如group_1.agg(['sum', 'mean'])。...: 可以对需要的计算数据进⾏筛选 Columns: 类似Index可以设置列层次字段,它不是⼀个必要参数,作为⼀种分割数据的可选⽅式。
目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...这样就可以生成 DataFrame 了,但如果要用非数字形式的列名,需要强制把字符串转换为列表, 再把这个列表传给 columns 参数。 ?...这时,要用 agg() 方法,把多个聚合函数的列表作为该方法的参数。 ? 上列就算出了每个订单的总价与订单里的产品数量。 19....年龄列有 1 位小数,票价列有 4 位小数,如何将这两列显示的小数位数标准化? 用以下代码让这两列只显示 2 位小数。 ? 第一个参数是要设置的选项名称,第二个参数是 Python 的字符串格式。
自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。...2 分组聚合 pandas的另一个强大的数据分析功能是分组聚合以及数据透视表,前者堪比SQL中的groupby,后者媲美Excel中的数据透视表。...pandas官网关于groupby过程的解释 级联其他聚合函数的方式一般有两种:单一的聚合需求用groupby+聚合函数即可,复杂的大量聚合则可借用agg函数,agg函数接受多种参数形式作为聚合函数,功能更为强大...例如,以某列取值为重整后行标签,以另一列取值作为重整后的列标签,以其他列取值作为填充value,即实现了数据表的行列重整。
bmi return x temp_data.apply(transfor, axis=1)# BMI = # apply Pandas中的axis参数=0时,永远表示的是处理方向而不是聚合方向...,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串,Pandas 为 Series 提供了....*", " ") 再来看下分割操作,例如根据空字符串来分割某一列 user_info.city.str.split(" ") 分割列表中的元素可以使用 get 或 [] 符号进行访问: user_info.city.str.split...) endswith() 相当于每个元素的str.endswith(pat) findall() 计算每个字符串的所有模式/正则表达式的列表 match() 在每个元素上调用re.match,返回匹配的组作为列表...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。
关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...agg():自定义聚合函数,可以使用numpy函数或自己定义的函数进行聚合。 这些聚合函数可以应用于单个列或多个列,也可以同时应用于多个列。...假设我们想要对tip_pct和total_bill列计算三个信息: 上面例子的结果DataFrame拥有层次化的列,这相当于分别对各列进行聚合,然后将结果组装到一起,使用列名用作keys参数:...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的行的唯一标识。 columns:指定数据透视后的列索引。可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的列的唯一标识。
Series 或 DataFrame 列的各种摘要统计信息(当然不包括 NA 值): In [94]: series = pd.Series(np.random.randn(1000)) In [95...()函数,它计算关于 Series 或 DataFrame 的列的各种摘要统计信息(当然不包括 NAs): In [94]: series = pd.Series(np.random.randn(1000...: In [167]: tsdf["A"].agg("sum") Out[167]: 3.033606102414146 使用多个函数进行聚合 您可以将多个聚合参数作为列表传递。...: In [167]: tsdf["A"].agg("sum") Out[167]: 3.033606102414146 使用多个函数进行聚合 您可以将多个聚合参数作为列表传递。...您可以将多个聚合参数作为列表传递。
假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...假设我们想要对tip_pct和total_bill列计算三个信息: 上面例子的结果DataFrame拥有层次化的列,这相当于分别对各列进行聚合,然后将结果组装到一起,使用列名用作keys参数:...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引
3、从字典创建一个系列 字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ?...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...7、从列表创建DataFrame 从列表中很方便的创建一个DataFrame,默认行列索引从0开始。 ?...13、聚合 可以按行、列进行聚合,也可以用pandas内置的describe对数据进行操作简单而又全面的数据聚合分析。 ? ?...14、聚合函数 data.function(axis=0) 按列计算 data.function(axis=1) 按行计算 ? 15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ?
(需要连接数据库),输出dataframe格式 to_sql:向数据库写入dataframe格式数据 连接 合并 重塑 merge:根据指定键关联连接多个dataframe,类似sql中的join concat...:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间,适合将数值进行分类...Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组 agg...describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:...drop_duplicates: 删除重复的行 str.strip: 去除字符串两端的空白字符 str.lower和 str.upper: 将字符串转换为小写或大写 str.replace: 替换字符串中的特定字符
引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...这在实际应用中非常有用,例如统计各部门员工的平均工资和最大工作经验。同样使用groupby和agg方法,只需传入一个包含多个列名的列表即可。 常见问题 优先级设定:明确各列之间的优先关系非常重要。...自定义函数需要接收一个Series作为输入,并返回一个标量值。 多个聚合函数 有时我们需要对同一列应用多个聚合函数。agg允许我们通过传递一个包含多个函数的列表来实现这一点。
神奇的是,pandas已经将第一列作为索引了: ? 需要注意的是,如果你想要你的工作在未来可复制,那么read_clipboard()并不值得推荐。...如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至DataFrame: ? Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ?...这里有两列,第二列包含了Python中的由整数元素组成的列表。...为了对多个函数进行聚合,你可以使用agg()函数,传给它一个函数列表,比如sum()和count(): ? 这将告诉我们没定订单的总价格和数量。...但是,一个更灵活和有用的方法是定义特定DataFrame中的格式化(style)。 让我们回到stocks这个DataFrame: ? 我们可以创建一个格式化字符串的字典,用于对每一列进行格式化。
: 神奇的是,pandas已经将第一列作为索引了: 需要注意的是,如果你想要你的工作在未来可复制,那么read_clipboard()并不值得推荐。...DataFrame: 这里有两列,第二列包含了Python中的由整数元素组成的列表。...DataFrame组合起来: 对多个函数进行聚合 让我们来看一眼从Chipotle restaurant chain得到的orders这个DataFrame: In [82]: orders.head...为了对多个函数进行聚合,你可以使用agg()函数,传给它一个函数列表,比如sum()和count(): 这将告诉我们没定订单的总价格和数量。...但是,一个更灵活和有用的方法是定义特定DataFrame中的格式化(style)。 让我们回到stocks这个DataFrame: 我们可以创建一个格式化字符串的字典,用于对每一列进行格式化。
你可以查看到Python,pandas, Numpy, matplotlib等的版本信息。 2. 创建示例DataFrame 假设你需要创建一个示例DataFrame。...神奇的是,pandas已经将第一列作为索引了: ? 需要注意的是,如果你想要你的工作在未来可复制,那么read_clipboard()并不值得推荐。 12....将一个字符串划分成多个列 我们先创建另一个新的示例DataFrame: ? 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。...为了对多个函数进行聚合,你可以使用agg()函数,传给它一个函数列表,比如sum()和count(): ? 这将告诉我们没定订单的总价格和数量。 19.
基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...,可以取值为字符串、列表、字典或Series、函数等。...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...的数据: # 通过列表生成器 获取DataFrameGroupBy的数据 result = dict([x for x in groupby_obj])['A'] # 字典中包含多个DataFrame...pd.DataFrame(df_obj.groupby("key")['data'].value_counts()) 输出为: 2.3.2 聚合操作 (6.2.3 ) pandas中可通过多种方式实现聚合操作
='raise') #labels接收单个列名或者多个列名的列表或者列的索引或者行索引。...()方法 多个 dataframe 连接(通过 index 匹配进行)(Join and Merge) 通过一个或多个键将两个数据集的列连接起来(完成 SQl 的 join 操作):pandas.merge...传入一个函数名组成的列表,则会将每一个函数的函数名作为返回值的列名,如果不希望使用函数名作为列名,可以将列表中的元素写成类似’(column_name,function)'的元组形式来指定列名为name...如果想指定聚合列的列名,可以写成new_column_name=(column_name,function)的形式,多列就并列传入多个参数即可。...a列作为索引键,又同时需要聚合该列的数据,这种情况下该函数会报错。
,比如根据性别,如果现在需要根据多个维度进行分组,只需在groupby中传入相应列名构成的列表即可。...无法对特定的列使用特定的聚合函数 无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入...,其中字典以列名为键,以聚合字符串或字符串列表为值 gb.agg({'Height':['mean','max'], 'Weight':'count'}) 使用自定义函数 在agg中可以使用具体的自定义函数...组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回True则会被保留,False则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为DataFrame返回。...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import pandas as pd data =
聚合的结果是每列在组中的一个标量值,或者至少被视为这样。例如,产生值组中每列的总和。...分组的列将是返回对象的索引。 传递as_index=False 将返回聚合的组作为命名列,无论它们在输入中是命名的索引还是列。...pandas 实现的任何减少方法都可以作为字符串传递给aggregate()。鼓励用户使用简写agg。它将操作,就好像调用了相应的方法一样。...分组的列将是返回对象的索引。 传递as_index=False 将返回你正在聚合的组作为命名列,无论它们在输入中是命名的索引还是列。...nth 值作为整数列表来从每个组中选择多个行。
2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...8.数据的合并和连接:Pandas可以将多个DataFrame对象进行合并和连接,支持基于列或行的合并操作。...常用操作 创建DataFrame import pandas as pd # 创建一个空的DataFrame df = pd.DataFrame() # 从列表创建DataFrame data =...查看DataFrame的索引 df.index # 查看DataFrame的统计信息 df.describe() 数据选择和过滤 # 选择单列 df['Name'] # 选择多列 df[['Name
DataFrame:二维表格数据结构,类似于电子表格或SQL数据库中的表,能够存储不同类型的列(如数值、字符串等)。...Pandas允许通过多种方式(如基于索引、列名等)来合并多个DataFrame,从而实现数据的整合。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。...例如,对整个DataFrame进行多列的汇总: agg_result = df.agg (['mean', 'sum']) print(agg_result) 这种方式非常适合需要同时对多个列进行多种聚合操作的场景...Pandas作为Python中一个重要的数据分析库,相较于其他数据分析库(如NumPy、SciPy)具有以下独特优势: 灵活的数据结构:Pandas提供了两种主要的数据结构,即Series和DataFrame
领取专属 10元无门槛券
手把手带您无忧上云