首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tf.lite

(弃用)二、tf.lite.OpHint类它允许您使用一组TensorFlow操作并注释构造,以便toco知道如何将其转换为tflite。这在张量流图中嵌入了一个伪函数。...参数:*args:要转换的输出列表(应该是tf.张量)。* * kwargs:明白了返回值:包装输出(具有附加元数据的标识替代)。这些也是tf.Tensor。...永久保存该函数是安全的,但是永久保存numpy数组是不安全的。五、tf.lite.OpsSet类定义可用于生成TFLite模型的操作系统集。...(默认错误)dump_graphviz_dir:在处理GraphViz .dot文件的各个阶段转储图形的文件夹的完整文件路径。...优先选择——output_format=GRAPHVIZ_DOT,以便保留输出文件的需求。(默认没有)dump_graphviz_video:布尔值,指示是否在每次图形转换之后转储图形。

5.3K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TensorFlow 2.0 快速入门指南:第一部分

    variable print(t2.shape) 输出将如下所示: (2, 2, 3) 张量可能会被重塑并保留相同的值,这是构建神经网络经常需要的。...可用于构成计算图一部分的张量的所有操作也可用于急切执行变量。 在这个页面上有这些操作的完整列表。 将张量转换为另一个(张量)数据类型 一种类型的 TensorFlow 变量可以强制转换为另一种类型。...请注意,在下文中,所有 TensorFlow 操作都有一个名称参数,当使用急切执行作为其目的是在计算图中识别操作时,可以安全地将其保留为默认值None。...在下面的示例中,浮点数组data被转换为二进制格式,然后保存到磁盘。 feature是一个字典,包含在序列化和保存之前传递给tf.train.Example的数据。...OHE 示例 1 在此示例中,我们使用tf.one_hot()方法将十进制值5转换为一个单编码的值0000100000: y = 5 y_train_ohe = tf.one_hot(y, depth=

    4.4K10

    深度学习_1_Tensorflow_1

    (plt,[2,3]) # shape=(2,3) # ========================================== # 有默认值的张量 # tf.zero(shape,dtype...,name=None) 由正太分部的随机值组成的矩阵 # ========================== # 张量的类型变换 # tf.string_to_number(string_tensor...,graph 会更加清晰,作用分明 with tf.variable_scope("name"): pass # 模型的保存与加载 saver = tf.train.Saver(var_list...=None,max_to_keep=5) # var_list:指定要保存和还原的变量,作为一个dict或列表传递 # max_to_keep:指示要保留的最近检查点文件的最大数量,创建新文件时,删除旧文件...,保留最新的5个 # 文件格式:checkpoint文件 saver.save("sess对象","路径/文件名字") # 第一次保存 # checkpoint:记录模型名字,文件路径 # name.data

    53330

    Tensorflow 1.3.0版本的变更概述

    tf.contrib.data.数据集类 tf.contrib.data.数据集类有几个重要的变化。...这个类中期望嵌套结构(nested structures)的函数现在毫无保留地将列表转换为tf.Tensor。不想用这个函数的用户可以使用元组(tuples)。...Dataset.interleave(map_func, cycle_length): 给程序员更多的控制,让他们知道如何将一个函数映射到每个元素。...对于无效的属性,开发人员可以要求他们的程序引发异常,或者他们可以选择处理NaN值。 下面是一个简短的例子,说明开发人员如何从均匀分布中获得一个随机变量的张量: ?...tf.gather函数,被用于在一个张量中选择变量,现在增加了一个轴参数,将会允许更灵活的收集。 ? tf.pad函数用于在现有张量周围放置数值,现在支持“常量(constant)”参数。

    1.2K70

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    原因是函数tf.transpose(t)所做的和NumPy的属性T并不完全相同:在TensorFlow中,是使用转置数据的复制来生成张量的,而在NumPy中,t.T是数据的转置视图。...字符串张量 类型是tf.string的常规张量,是字节串而不是Unicode字符串,因此如果你用Unicode字符串(比如,Python3字符串café)创建了一个字符串张量,就会自动被转换为UTF-...集合运算可以用tf.sets包。 队列 用来在多个步骤之间保存张量。TensorFlow提供了多种队列。...但是,这只适用于张量参数:如果你将Python数值传给TF,就会为每个独立值创建一个计算图:比如,调用tf_cube(10)和tf_cube(20)会产生两个计算图。...自定义Keras组件可以包含任意Python代码吗,或者Python代码需要转换为TF函数吗? 如果想让一个函数可以转换为TF函数,要遵守设么规则? 什么时候需要创建一个动态Keras模型?怎么做?

    5.3K30

    TF-char4-TF2基本语法

    char4-TensorFlow基础入门 TensorFlow是一个面向深度学习算法的科学计算库,内部数据保存在张量Tensor对象中,所有的运算操作都是基于张量进行的 ?...tf.int16/32/64 tf.float16/32/64;tf.float64就是tf.double 需要注意的点: 高精度转低精度可能会报错 对于浮点数,高精度的张量可以表示更精准的数据 实际中...在创建张量的时候,可以指定初始值:tf.fill(shape, vlaue) tf.fill([2,3], -1) # 形状为2*3,值全部是-1 创建已知分布的张量 正态分布和均匀分布是最常见的。...改变视图reshape 张量存储 张量的存储体现张量在内存上保存为一块连续的存储区域 张量的存储需要人为跟踪 shape中相对靠左的维度称之为大维度;相对靠右的维度称之为小维度 张量视图 语法格式为tf.reshape...表示长度为2倍,即复制1份 3表示长度为3倍,即复制2份;类推 复制操作会创建一个新的张量来保存复制后的张量,涉及到大量的IO操作,运算代价大 b = tf.constant([1,2]) b = tf.expand_dims

    1.6K20

    tf.transpose

    tf.transpose( a, perm=None, name='transpose', conjugate=False)转置a.根据perm来改变尺寸。...返回的张量的维i将对应于输入维perm[i]。如果没有perm,它被设为(n-1…0),其中n是输入张量的秩。因此,默认情况下,这个操作对二维输入张量执行一个常规矩阵转置。...如果共轭为真,a,dtype可以是complex64,也可以是complex128,然后对a的值进行共轭和转置。...将其设置为True在数学上等价于tf.conj(tf.transpose(input))返回值:转置张量。...Numpy的兼容性在numpy中,转置是一种内存效率高的常量时间操作,因为它们只是用调整后的步长返回相同数据的新视图。张量流不支持大步,因此转置返回一个新的张量,其中的项被置换。

    89920

    tf.sparse

    当构造稀疏张量对象时,这并不是强制的,但是大多数ops都假定正确的顺序。如果稀疏张量st的序错了,可以通过调用tf.sparse.reorder(st)得到一个固定的版本。...参数:feed_dict:映射张量对象以提供值的字典。有关有效提要值的描述,请参见tf.Session.run。session:(可选)用来计算这个稀疏张量的过程。如果没有,则使用默认会话。....): 重新构造稀疏张量,以新的密集形状表示值。retain(...): 在稀疏张量中保留指定的非空值。segment_mean(...): 沿着张量的稀疏段计算平均值。....): 沿着轴将稀疏张量分解为num_split张量。to_dense(...): 将稀疏张量转换为稠密张量。to_indicator(...): 将ids的稀疏张量转换为稠密的bool指示张量。....): 转置一个SparseTensor。

    1.9K20

    文末福利|一文上手TensorFlow2.0(一)

    为了保留静态图的优势(例如性能优化和可移植性等),TensorFlow2.0提供了“tf.function”方法,使用“tf.function”修饰的python函数,TensorFlow可以将其作为单个图来运行...表2-2 TensorFlow中张量的形状示例 TensorFlow中有一些特殊的张量,以下是一些主要的特殊张量: tf.Variable(变量,TensorFlow中的张量一般都不会被持久化保存,参与一次运算操作后就会被丢弃了...变量(variable)是一种特殊的运算操作,它可以将一些需要持久化保存的张量存储在内存或显存中,并会返回一个可以对该变量所引用的张量进行一系列特定操作的句柄,例如Assign和AssignAdd(等同于...模型的参数是保存在变量中的,在模型的训练过程中,参数在不断地更新。变量的值可以修改,但是维度不可以变。) tf.constant(常量,常量定义时必须初始化值,且定义后其值和维度不可再改变。)...我们可以使用tf.function来将python程序转换为TensorFlow的静态计算图,这样就可以保留TensorFlow1.x版本中的静态计算图的一些优势。 4.

    1.3K31

    Transformers 4.37 中文文档(二十九)

    如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。...如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将很有用。...如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。...如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。...如果您想要更多控制如何将input_ids索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则这很有用。 output_attentions(bool,可选)-是否返回所有注意力层的注意力张量。

    40010
    领券