CoreML为iOS带来了机器学习 - 应用程序可以利用训练有素的机器学习模型来执行从问题解决到图像识别的各种任务。...该介绍包括以下内容: CoreML入门 将CoreML与Vision框架结合使用 CoreML入门 这些步骤描述了如何将CoreML添加到iOS项目中。...单值功能提供程序的代码如下所示: C#复制 使用这样的类,可以以CoreML理解的方式提供输入参数。功能的名称(例如myParam代码示例中)必须与模型所期望的相匹配。...; 可以使用GetFeatureValue每个输出参数的名称(例如theResult)访问输出值,如下例所示: C#复制 将CoreML与Vision框架结合使用 CoreML还可以与Vision框架结合使用...,以对图像执行操作,例如形状识别,对象识别和其他任务。
其实coreML的demo,github上有很多,但是大部分都是用swift写的,而对于从C/C++语言过来的同学来说,Objective-C或许会更容易看懂一些。...当然,为了偷懒起见,模型并不是我训练的,模型来自这里:https://github.com/syshen/YOLO-CoreML 。该仓库使用swift实现的,有兴趣的可以对比着看。...将模型添加到xcode工程中,我将模型名字改为yoloModel,并且量化到了16bit。当然使用原始模型200多MB也完全OK。 ?...模型的输入名称为input_0,输出为output_0。...然后,将预测得到的结果进行解析,根据yolov2模型的输出feature结构来解析出上面DetectionInfo里面的信息。
, HouseLR.mlmodel如图 11.7 所示: 图 11.7:显示 Swift iOS 项目和线性回归 Core ML 模型 其他HouseSVM.mlmodel模型看起来完全一样,只是机器学习模型名称和模型类从...coreml_model.save('Stock.mlmodel') 请注意,此处使用与冻结 TensorFlow 检查点文件相同的输入和输出名称。...输出名称。...如果您尝试转换我们在本书中构建的其他 TensorFlow 模型,则可以使用的最佳非官方工具是https://github.com/tf-coreml/tf-coreml上的 TensorFlow 到核心...现在让我们看看我们是否可以制定出更好,更复杂的策略。 回想一下,策略只是从状态到操作的映射或函数。
比如下图(用netron工具查看,真是一个很好用的工具 https://pypi.org/project/netron/)。 自动分配的输入名称和输出名称是0 和 199。...这样转换成coreML模型后加载到xcode中会出现"initwith0"这样的编译错误,就是模型初始化的时候不能正确处理这个输入名称0。因此最好是在export的时候将其修改一个名称。 ? ?...修改之后的模型是这样的,可以看到模型的输入和输出名称都发生的修改: ? ?...在最新的coreML2.0中,支持模型的量化. coreML1.0中处理模型是32位,而在coreML2.0中可以将模型量化为16bit, 8bit, 4bit甚至是2bit,并且可以设置量化的方法。...将模型拖进xcode工程后,点击模型将在右侧页面看到这样的信息,包括模型的名称、尺寸、输入、输出等信息,并且会提示已经自动生成Objective-c的模型类文件: ?
从那里开始,我们将编写一个脚本将我们训练 好的Keras模型从HDF5文件转换为序列化的CoreML模型 – 这是一个非常简单的过程。 接下来,我们将在Xcode中创建一个Swift项目。...为了学习这篇博文的CoreML基础知识,我从网上其他专家开发人员那里收集了这个项目所需的知识。...image_input_names = “image” :从文档引用:“将名称输入可以被Core ML处理为图像Keras模型(input_names参数的子集)。...因此,我选择使用代码而不是命令行参数来处理它,以避免可能出现的问题。 第35行将.model扩展从输入路径/文件名中删除,并将其替换为.mlmodel,将结果存储为输出。...希望你看到苹果公司CoreML框架中的价值,它对苹果开发人员和机器学习工程师来说简直是福音书,因为它可以吸收深度神经网络,并输出一种基本与iPhone和iOS兼容的模型。
APP中,即下图所示: CoreML有其自定义的模型类型.mlmodel,并且支持目前几种主流模型到mlmodel的转换,包括Caffe、Keras 1.2.2+、scikit-learn等。...class_labels允许开发者提供一个包含所有类名的文件,每类一行,用以将分类预测的结果映射到类名中,从而可以直接输出human readable的直观分类结果。...而相比之下,如果不设置该参数,则输出即被解析为数组形式,需要开发者自己完成后续计算和类别映射: predicted_feature_name: 用于对Core ML模型输出类别名称进行重命名,默认为上面图中的...模型对应的接口文件可以在Model Class中名称右侧的小箭头点击查看。 这里出现了一个小插曲。...4.3 编写处理接口 在生成的对应接口文件中,可以了解对应的模型类名称和接口函数 - (void) predictImageScene:(UIImage *)image { //主处理函数 squeezeNet
从 iOS 10 开始,你需要添注说明为何你的 App 需要使用相机及相簿功能。 ? coreml-plist-privacy 好了,现在你已经准备好前往本篇教学的核心部分了。...coreml-pretrained-model 在这里,我们使用了 Inception v3 模型。当然,你也可以程式其他另外三种的资料模型。...其他你需要注意的资讯有模型评估参数(Model Evaluation Parameters),这告诉你模型放入的是什么,输出的又是什么。...coreml-failed-case 小结 我希望你现在了解了如何将 Core ML 整合至你的 App 之中。...本篇只是介绍性的教学文章,如果你对如何将其他的机器学习模型(如:Caffe、Keras、SciKit)整合至 Core ML 模型感兴趣的话,敬请锁定我们 Core ML 系列的下篇教学文章。
在xcode中使用mlmodel模型,之前说的最简单的方法是将模型拖进工程中即可,xcode会自动生成有关模型的前向预测接口,这种方式非常简单,但是更新模型就很不方便。...model_config error:&error]; 4.需要注意的是采用动态编译方式,coreml只是提供了一种代理方式MLFeatureProvider,类似于C++中的虚函数。...因此需要自己重写模型输入和获取模型输出的类接口(该类继承自MLFeatureProvider)。如下自己封装的MLModelInput和MLModelOutput类。...MLModelInput类可以根据模型的输入名称InputName,传递data给模型。而MLModelOutput可以根据不同的输出名称featureName获取预测结果。...中的featureNames获取对应的预测输出数据,类型为MLMultiArray: MLModelDescription *model_description = compiled_model.modelDescription
最重要的是,所有的程式码都用Swift 4和Python 2.7编写。 在我们开始前… 本教程的目的是帮助读者了解如何将各类型的数据模型转换为Core ML格式。...在本教程中,我使用这个Caffe模型,向读者展示如何将其转换为Core ML格式,并加以实验花朵的判定工作。...在上面的说明中,我们将定义一个名为coreml_model的模型,用来当做从Caffe转到Core ML的转换器,它是coremltools.converters.caffe.convert函式的运行结果...因此,如果不添加这两个参数,我们的Core ML模型将仅接受数字做为输入和输出,而不是图像和字符串做为输入和输出。...coreml-model-ready 将模型整合到Xcode中 现在我们来到最后一步,将刚刚转换至Xcode项目的模型进行整合。
model.save('mnistCNN.h5') Keras 到 CoreML: 要将您的模型从 Keras 转换为 CoreML, 我们需要执行更多的其他步骤。...我们的深层学习模式期望28×28正常化灰度图像, 并给出了类预测的概率为输出。此外, 让我们添加更多的信息, 我们的模型, 如许可证, 作者等。...您已经设计了您的第一个 CoreML 模型。使用此信息, 您可以使用 Keras 设计任何自定义模型, 并将其转换为 CoreML 模型。...我添加了两个名为 "新建" 和 "运行" 的BarBttonItem, 其名称代表其功能。...CoreML 需要 CVPixelBuffer 格式的图像所以我添加了辅助程序代码, 将其转换为必需的格式。 接下来就是输入图片,将预测的输出的数字显示在 label 上面。
打开终端,输入如下代码安装pip: sudo easy_install pip 3.coremltools:这个包有助于将你的模型从python转换成CoreML能理解的格式。...将你的机器学习模型转换成CoreML格式 CoreML其中一个优势,或者我应该说它的创造者作出的明智的决定是,支持在sklearn、caffe、xgboost等其他流行框架中训练好的机器学习模型的转换...再选择一个转换器对模型进行转换,本例中用converters.sklearn,因为要转换的模型是用sklearn工具建立的。然后在.convert()括号内声明模型对象、输入变量名称、输出变量名称。...接下来设置模型参数来添加更多关于输入、输出的信息,最后用.save()保存已转换成CoreML格式的模型文件。 双击模型文件,会用Xcode打开。...提供了很多模型,因为它能从其他主流机器学习框架中引入模型: 支持向量机(SVM) 树集成,如随机森林、提升树 线性回归和逻辑回归 神经网络:前向反馈、卷积、循环 缺点: 只支持有监督模型,不支持无监督模型和强化学习
但是,开发人员经常遇到的其中一个挑战是:如何创建模型?幸运的是,Apple在去年冬天宣布从GraphLab收购了Turi Create,正正解决了我们的问题。...让我们从汇入Core ML套件并调用模型开始吧! import CoreML ......如果你想添加更多种风格,你可以加入更多图片到style资料夹中。我们将styleArray声明 为MLMultiArray,这是一种被Core ML所使用来作模型输入及输出的阵列型态。...在这段代码中,我们先定义了predictionOutput用来储存模型预测的输出结果。我们以使用者的影像以及风格阵列作为参数,调用模型的prediction方法。...我已经向你介绍了Turi Create,并创造了你自己的风格转换模型,如果是在5 年前,一个人定必无法完成。你也学习到了如何将Core ML 模型汇入iOS 应用程序中,并有创意地应用它!
然后通过陀螺仪可以得到当前手机正方向的朝向α; ? 图四 3. 之后只要将3D模型渲染在屏幕正中央俯视偏角γ=α−θ处就可以了。 ? 图五 那么问题来了,如何将一个3D模型显示在屏幕正中央γ处呢?...这里就用到了ARKit的ARSCNView中的模型渲染API,跟OpenGL类似,ARSCNView从创建之初会设置一个3D世界原点并启动摄像头,随着手机的移动,摄像头相当于3D世界中的一个眼睛,可以用一个观察矩阵...coreml_model.save('CarRecognition.mlmodel') coremltools同时还提供了设置元数据描述的方法,比如设置作者信息、模型输入数据格式描述、预测输出张量描述,...当摄像头获取一帧图片后会首先送入目标检测模块,这个模块使用一个CNN模型进行类似SSD算法的操作,对输入图片进行物体检测,可以区分出场景中的行人、车辆、轮船、狗等物体并输出各个检测物体在图片中的区域信息...如图十一所示,YOLO算法将输入图片分为13 × 13个小块,每张图片的各个小块对应到其所属物体的名称和这个物体的范围。
简单地说,这个新工具能把一种框架训练的模型,转换成另一种框架所需的格式。比如说,机器学习开发者可以将PyTorch训练的模型转换到Caffe2上,减少从研究到产品化所耗费的时间。...深度学习框架的选择是造成这种区别的关键。FAIR习惯于使用PyTorch。这种深度学习框架可以不考虑资源限制,在研究中取得漂亮的结果。 然而在现实世界中,大部分人都受限于智能手机和计算机的计算能力。...大部分机器学习框架的功能,都是让开发者能更容易地建立、运行神经网络的计算图,而这些框架之间的核心区别,就在于它们用各不相同的格式来表示这些计算图。...ONNX提供一种共享的模型表示,提升了AI框架之间的互操作性。 在科研范畴之外,其他人也在试图将机器学习模型更方便地转换为针对特定设备优化的形式。...例如,苹果的CoreML就可以帮助开发者转换某些类型的模型。目前,CoreML还不支持TensorFlow,而且创建自定义转换器的过程很复杂,转换器最后有可能无法使用。
引言 随着人工智能技术的发展,机器学习已经成为推动软件创新的关键力量。对于移动开发者而言,如何将这些强大的机器学习能力整合到自己的应用中变得尤为重要。...应用场景 图像与视频分析 利用 Core ML 可以开发出能够识别图像中物体、人物表情、手势或者视频中的动作的应用。这种能力被广泛应用于摄影应用、AR 增强现实游戏以及其他需要视觉理解的任务中。...集成过程 让我们通过一个具体的示例来说明如何将一个图像分类模型集成到 iOS 应用中: 1. 模型训练 首先,在 TensorFlow 中训练一个图像分类模型。...模型转换 使用 `tfcoreml` 工具将训练好的模型转换为 Core ML 的 `.mlmodel` 格式。转换过程中还需要指定输入输出的类型和尺寸等信息。 3....如果你需要单独处理模型转换等任务,可以考虑使用命令行工具如coremltools。 3. 获取机器学习模型 你可以从Apple的官方资源或其他第三方来源获取预先训练好的模型。
Neural Networks for Mobile Vision Applications》中神经网络架构 MobileNet 的苹果 CoreML 框架实现。...当然,如果你希望尝试,以下是如何将原版 Caffe 模型转换到.mlmodel 文件中的方法: 1. 从 Caffemodel 文件中下载模型,放到本项目中的根目录下。...tensorflow $ pip install keras==1.2.2 $ pip install coremltools 使用/usr/bin/python2.7 设置虚拟环境非常重要,如果你在使用其他版本的...我们引入了两个简单的全局超参数,可以在延迟和准确性之间找到平衡点。这些超参数允许模型开发者针对应用面临的局限性选择正确尺寸的模型。...在 ImageNet 分类任务中,我们的模型具有资源消耗和精度的平衡性,并展示了颇具竞争力的性能。
YOLO与Core ML 我们从Core ML开始,因为大多数开发人员希望用此框架将机器学习放入他们的应用程序中。接下来,打开Xcode中的TinyYOLO-CoreML项目。...从终端运行此命令 还要确保你已经pip安装。这是Python包管理器,您将使用它来安装其他软件包: 接下来,安装virtualenv包: 这些都是我们要用到的包。...这会读取tiny-yolo-voc.h5 Keras模型,在TinyYOLO-CoreML项目的文件夹中,生成TinyYOLO.mlmodel。...注意: MLMultiArray有点像NumPy数组,但其他功能很少。例如,没有办法转置轴或将矩阵重新形成不同的维度。 现在我们如何将MlMultiArray的边框,显示在应用程序中?...然后,它遍历所有卷积层,并将权重与批次正则化参数一起放入单个文件中,每个层一个文件。这样做不是必须的,而且还会有大量的小文件。但这使得在应用程序中更容易加载这些数据。
不过,我一般从 Conda 官方的 “Archive” 页面[5]进行下载,因为能够更加直观的看到,我们想要下载的目标文件的各种信息,比如:名称、版本、尺寸、更新时间、文件指纹。...工具方法来转换其他格式模型到 Core ML 模型的逻辑: coreml_model = coremltools.models.MLModel(...) coreml_model.convert(...../models 命令执行会比较久,十来分钟左右,包含从 Huggingface 下载模型,加载并转换模型格式。...默认情况下,模型使用的是 CompVis/stable-diffusion-v1-4,如果你希望使用其他的模型,可以通过添加 --model-version 参数,支持的模型版本除了默认的 “v1.4”...其他:一个低级 Bug 使用过其他版本的图片生成模型的同学,手里一定有“大段咒语”,当我们将超级长的咒语扔到 ML Stable Diffusion 中的时候,大概率会遇到类似下面的报错: Traceback
不过,我一般从 Conda 官方的 “Archive” 页面进行下载,因为能够更加直观的看到,我们想要下载的目标文件的各种信息,比如:名称、版本、尺寸、更新时间、文件指纹。...工具方法来转换其他格式模型到 Core ML 模型的逻辑: coreml_model = coremltools.models.MLModel(...) coreml_model.convert(...../models 命令执行会比较久,十来分钟左右,包含从 Huggingface 下载模型,加载并转换模型格式。...默认情况下,模型使用的是 CompVis/stable-diffusion-v1-4,如果你希望使用其他的模型,可以通过添加 --model-version 参数,支持的模型版本除了默认的 “v1.4”...其他:一个低级 Bug 使用过其他版本的图片生成模型的同学,手里一定有“大段咒语”,当我们将超级长的咒语扔到 ML Stable Diffusion 中的时候,大概率会遇到类似下面的报错: Traceback
开始: 将机器学习模型转换成CoreML格式 CoreML的优势之一是支持在其他流行的框架中建立训练机器学习模型的转换,比如sklearn,caffe,xgboost等。...在这个示例中,我们将在sklearn中构建一个垃圾信息分类器,然后将相同的模型转移到CoreML。...然后,传递模型对象、输入变量名和. convert()中的输出变量名。接着,设置模型的参数,以添加更多关于输入、输出的信息,最后调用. save()来保存模型文件。 ?...通过这种方式,你可以轻松地在代码中访问该文件。 以下是整个过程: ? 编译模型 从模型开始进行推断之前,我们需要利用Xcode去创建阶段编译模型。...; 它决定是否在CPU或GPU上运行该模型(或两者兼而有之); 因为它可以使用CPU,你可以在iOS模拟器上运行它(iOS不支持GPU); 它支持许多模型,因为它可以从其他流行的机器学习框架中导入模型,
领取专属 10元无门槛券
手把手带您无忧上云