XSHG","600196.XSHG"], #代码 'name':["伟星新材", "海康威视", "洋河股份", "贵州茅台", "复星医药"]} codes=pd.DataFrame...如果先用index数组和列名构造一个骨架,也可以 shijian=['2011','2012','2013','2014','2015','2016','2017','2018'] #年报 fr=pd.DataFrame...https://blog.csdn.net/weekdawn/article/details/81389865 5、DataFrame的元素定位,ix弃用了,只能用loc,iloc,at,iat。...codes.loc[cd,'name'] #代码为cd的行,对应的name列 codes.at[cd,'name'] #如果目标为单个元素,at和loc差不多 codes.loc[codes["code..."]==cd,'name'] #如果code不是index,而是普通列,可以设条件 而iloc和iat的行和列参数,必须都是index 6、一些转换 codes.index.tolist() #把series
# the basic way s = 0 for x in range(10): s += x # the right way s = sum(ra...
标签:VBA 下面的VBA自定义函数演示了如何对应用了粗体格式的单元格求和。...在VBE中,插入一个标准模块,在其中输入下面的代码: Public Function SumBold( _ ParamArray vInput() As Variant) As Variant...ErrHandler: '检查是否溢出 If Err.Number = 6 Then SumBold = CVErr(xlErrNum) Resume Continue End Function 注意,当求和的单元格区域中单元格格式发生更改时...这意味着,仅对求和单元格区域中的单元格设置加粗格式,使用该自定义函数求和的值不会改变,除非按F9键强制计算,或者在工作表中输入内容导致工作表重新计算。...这个程序也提供了一个模板,可以稍作修改对其它格式设置的单元格来求和
Q:很有趣的一个问题!如下图1所示的工作表,在单元格区域A1:A2中,使用公式: =”#N/A” 输入的数据。 在单元格A3:A4中,使用公式: =NA() 输入的数据。...它们输出的结果看起来相似,但实质上是不同的:在A1和A2中是文本类型,而A3和A4中是错误类型。从数据的对齐方式上也可以反映出来。 ?...图1 我现在如何使用SUMIF函数来求出文本“#N/A”值对应的列B中的数值之和?看起来简单,但实现起来却遇到了困难。我想要的答案是:3,但下列公式给我的答案是:12。...这些公式是: =SUMIF(A1:A4,"#N/A",B1:B4) SUMIF(A1:A4,"=#N/A",B1:B4) =SUMIF(A1:A4,A1,B1:B4) 如何得到正确的答案3?...A:从上面的结果看得出来,在底层,SUMIF函数在进行比较之前会将这些标准参数中的每一个从文本类型强制转换为错误类型。
如下图1所示,在列A中存在文本、数值和空单元格。现在,想要求头3个出现的数字之和,也就是说,求单元格A5中的10000、A14中的2000、A20中的1000这3个数字之和。 ?...图1 我们一眼就可以看出这3个数字是该列中首先出现的前3个数字,但Excel不知道。如何使用公式来求得这3个数字之和呢?可以使用下面的数组公式实现。...在单元格D2中输入下面的数组公式: =SUM(SUM(OFFSET(A1,SMALL(IF(ISNUMBER(A2:A100),ROW(A2:A100)),{1,2,3})-1,))) 结果如下图2所示...传递到最外层的SUM函数: SUM(10000, 2000, 1000) 得到13000。 有点难以理解!...其实,尽可能让数据符合Excel的特点,合理布局,往往会给数据分析带来便利,而不必像上面那样,费尽心力编写冗长且难以理解的数组公式了。
比如,在Excel中计算某一时间段某一产品的销售总和——实际就是多条件求和问题。...在Excel2007以下,多条件求和通常使用sumproduct函数,而2010及以上,带了sumifs多条件求和函数,使用都非常简单。...其实,对于大部分Excel日常的工作问题,都在于对基本功能和函数的掌握,但是,Excel中的函数有400多个,由此衍生的公式应用更是不计其数,是不可能记得住,也完全没有必要记住。...其实,Excel中函数的核心部分,大概包括以下60多个基础函数,其中需精通的43个,需熟悉的23个,如本问题中所用的Sumifs函数,是属于需要精通的如图所示: 一定要记住,函数不是靠记住的,而是靠练熟的...为此,为了方便日常联系,我总结了这60多个函数的要点,制作成30多个工作表汇总到一个工作簿文件中,如下图所示,欢迎私信“材料”下载: 1、分类函数集中训练 包括文本类、数值类、日期类等等。
DataFrame上最常见的操作之一是重命名(rename)列名称。 分析人员重命名列名称的动机之一是确保这些列名称是有效的Python属性名称。...这意味着列名称不能以数字开头,而是带下画线的小写字母数字。好的列名称还应该是描述性的,言简意赅,并且不应与现有的DataFrame或Series属性冲突。 本文中,我们将重命名列名称。...重命名的动机是使代码更易于理解,并让你的环境对你有所帮助。如果使用点表示法访问Series,则Jupyter将允许自动补全Series方法(但不允许在索引访问时自动补全方法)。...movies = pd.read_csv("data/movie.csv") 2)DataFrame的重命名方法接收将旧值映射到新值的字典。 可以为这些列创建一个字典,如下所示。...接下来将显示如何通过赋值给.column属性进行重命名。 扩展 在此处,更改了列名称。还可以使用.rename方法重命名索引,如果列是字符串值,则更有意义。
前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...本教程展示了如何在实践中使用此功能的几个示例。...示例 1:插入新列作为第一列 以下代码显示了如何插入一个新列作为现有 DataFrame 的第一列: import pandas as pd #create DataFrame df = pd.DataFrame
初始化DataFrame 创建一个空的DataFrame变量 import pandas as pd import numpy as np data = pd.DataFrame() ...('user.csv') print (data) 将DataFrame数据写入csv文件 to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv import...异常处理 过滤所有包含NaN的行 dropna()函数的参数配置参考官网pandas.DataFrame.dropna from numpy import nan as NaN import...'表示去除行 1 or 'columns'表示去除列 # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除 # thresh: 整数n,表示每行或列中至少有...n个元素补位NaN,否则去除 # subset: ['name', 'gender'] 在子集中去除NaN值,子集也可以index,但是要配合axis=1 # inplace: 如何为True,
filename | tail -n +3000 | head -n 1000 【二】显示1000行到3000行 cat filename| head -n 3000 | tail -n +1000 *注意两种方法的顺序...分解: tail -n 1000:显示最后1000行 tail -n +1000:从1000行开始显示,显示1000行以后的 head -n 1000:显示前面1000行 【三...】用sed命令 sed -n '5,10p' filename 这样你就可以只查看文件的第5行到第10行。
背景介绍 DataFrames和Series是用于数据存储的pandas中的两个主要对象类型:DataFrame就像一个表,表的每一列都称为Series。您通常会选择一个系列来分析或操纵它。...今天我们将学习如何重命名Pandas DataFrame中的列名。 ? 入门示例 ? ? ? ?...上述代码: # ## 如何重命名pandas dataframe中的列名字 # In[32]: import pandas as pd # In[33]: data = pd.read_csv('ufo.csv...') # ## 查看data的类型 # In[34]: type(data) # ## 显示前几条数据 # In[35]: data.head() # ## 打印所有的列名 # In[36]: data.columns...'Shape Reported':'Shape_Reported',\ 'Colors Reported':'Colors_Reported'},inplace=True) # ## 打印重命名后的列
的Series集合 创建 DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引 ...1, stop=4, step=1) 值 [['aaaa' '4000'] ['bbbb' '5000'] ['cccc' '6000']] 除了进行查看,我们还能简单的对行索引和列索引进行修改...admin 2 3 admin 3 另一种删除方法 name a 1 admin 1 3 admin 3 (1)添加列 添加列可直接赋值,例如给 aDF 中添加...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能 DataFrame对象成员找最低工资和高工资人群信息 DataFrame有非常强大的统计功能,它有大量的函数可以使用
filename | tail -n +3000 | head -n 1000 2、显示1000行到3000行 cat filename| head -n 3000 | tail -n +1000 注意两种方法的顺序...分解: tail -n 1000:显示最后1000行 tail -n +1000:从1000行开始显示,显示1000行以后的 head -n 1000:显示前面1000行 3、用sed命令 sed -...n '5,10p' filename 这样你就可以只查看文件的第5行到第10行。...4、随文件变化显示文件末尾几行 tail -f filename
在Java中,对List中对象的某个属性进行求和是一种常见的操作。使用Stream API可以简洁高效地实现这一目标。...::getCollection) // 获取每个对象的 BigDecimal 属性值 .filter(Objects::nonNull) // 过滤掉为 null 的值 .reduce...collection,以及相应的 getter 和 setter 方法。...在 Main 类中,使用 getListOfObjects() 方法获取示例对象列表 res,你可以替换为你自己的数据源。...使用 filter() 方法过滤掉为 null 的值。最后使用 reduce() 方法将所有值累加起来得到合计值,并将其打印输出。
linux 如何显示一个文件的某几行(中间几行) 【一】从第3000行开始,显示1000行。...处理完输入文件的最后一行后,sed便结束运行。sed把每一行都存在临时缓冲区中,对这个副本进行编辑,所以不会修改原文件。 2.定址 定址用于决定对哪些行进行编辑。...datafile #删除包含”My”的行到第十行的内容 3.命令与选项 sed命令告诉sed如何处理由地址指定的各输入行,如果没有指定地址则处理所有的输入行。...最多可以定义9个标签,从左边开始编号,最左边的是第一个。此例中,对第1到第20行进行处理,you被保存为标签1,如果发现youself,则替换为your。...6.11 y命令 该命令与UNIX/Linux中的tr命令类似,字符按照一对一的方式从左到右进行转换。例如,y/abc/ABC/将把所有小写的a转换成A,小写的b转换成B,小写的c转换成C。
Python 提供了各种预定义的数据结构,包括列表、元组、映射、集合、堆和阵容。这些组件在每种编程语言中都至关重要。在这篇文章中,我们将专注于用于保存关键信息对的词典。...地图是Python中的一个关键数据组件,它使人们能够存储密钥和数据对。这些可与各种编程框架中的关联数组相媲美。这些旨在快速保存和访问数据。在参考书中,元素应该是不同的。相反,元素可以属于任何数据类别。...映射是可变的,这意味着您可以根据需要附加、消除或调整元素-值对。我们计划探索词典的基础知识及其重要性。此外,我们将学习使用 Python 编程语言对映射内的标识符执行总计算的过程。...在这种情况下,集合表示“工资”字典中包含的条目。绕过“sum()”函数的“工资”字典中的条目,可以轻松确定总收入。...通过使用“wages.values()”作为“total()”中的参数,它从字典中获取值。 计算出的总计随后记录在容器“总计”中。将来,将使用“output()”函数来呈现结果。
今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...行索引其实对应于Series当中的Index,也就是对应Series中的索引。所以我们一般把行索引称为Index,而把列索引称为columns。...先是iloc查询行之后,再对这些行组成的新的DataFrame进行列索引。...逻辑表达式 和numpy一样,DataFrame也支持传入一个逻辑表达式作为查询条件。 比如我们想要查询分数大于200的行,可以直接在方框中写入查询条件df['score'] > 200。 ?
访问元素和提取子集是数据框的基本操作,在pandas中,提供了多种方式。...对于一个数据框而言,既有从0开始的整数下标索引,也有行列的标签索引 >>> df = pd.DataFrame(np.random.randn(4, 4), index=['r1', 'r2', 'r3...索引运算符 这里的索引运算符,有两种操作方式 对列进行操作,用列标签来访问对应的列 对行进行切片操作 列标签的用法,支持单个或者多个列标签,用法如下 # 单个列标签 >>> df['A'] r1 -0.220018...需要注意的是,当对不存在的列标签设值时,并不会报错,会自动进行append操作,示例如下 >>> df['E'] = 5 >>> df A B C D E r1 0.706160...>>> df.iat[0, 0] -0.22001819046457136 pandas中访问元素的具体方法还有很多,熟练使用行列标签,位置索引,布尔数组这三种基本的访问方式,就已经能够满足日常开发的需求了
对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...但这并不能给我需要的答案,里面提到: for date, row in df.T.iteritems(): 要么 for row in df.iterrows(): 但是我不明白row对象是什么,以及我如何使用它...最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows() for index, row in df.iterrows():...改用DataFrame.apply(): new_df = df.apply(lambda x: x * 2) itertuples:列名称将被重命名为位置名称,如果它们是无效的Python标识符...---- 将自定义函数用于给定的DataFrame: list(myiter(df)) [MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(
一 简介 假如给你一篇文章,让你找出其关键词,那么估计大部分人想到的都是统计这个文章中单词出现的频率,频率最高的那个往往就是该文档的关键词。...但是,很容易想到的一个问题是:“的”“是”这类词的频率往往是最高的对吧?但是这些词明显不能当做文档的关键词,这些词有个专业词叫做停用词(stop words),我们往往要过滤掉这些词。...二 TF-IDF统计方法 本节中会出现的符号解释: TF(t,d):表示文档d中单词t出现的频率 DF(t,D):文档集D中包含单词t的文档总数。...log表示对得到的值取对数。 TF-IDF 数学表达式 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。...IDFModel取特征向量(通常这些特征向量由HashingTF或者CountVectorizer产生)并且对每一列进行缩放。直观地,它对语料库中经常出现的列进行权重下调。
领取专属 10元无门槛券
手把手带您无忧上云