这一讲介绍了我们的第一个机器学习算法,”批量“梯度下降算法(Batch Gradiant Descent)。...注意到他在前面加了个“批量(Batch)”,这其实是为了与以后的另一种梯度下降算法进行区分从而体现出这个算法的特点。 线性回归 梯度下降算法这是用来解决所谓的“线性回归”问题。...梯度下降 有了直观的感受我们就来看看对J求梯度下降的具体意义了。其实也很好理解,就是对于J函数上的某一个点,每一次迭代时都将他沿下降最快的方向走一小段距离(所谓方向,当然是要分到各个变量上面了)。...这里的\alpha又被称为”学习因子(learning rate)“,在迭代的时候要注意这个值的选取。形象的看其实就是每次下降迈的步子的大小。...根据这个公式,我们注意到每一次迭代都得将所有的数据用一遍,这导致了效率的低下。所以由于这个算法又被称为批量梯度下降算法(BGD)。
批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent...其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。 为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。...对应的目标函数(代价函数)即为: 1、批量梯度下降(Batch Gradient Descent,BGD) 批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。...其迭代的收敛曲线示意图可以表示如下: 2、随机梯度下降(Stochastic Gradient Descent,SGD) 随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新...其迭代的收敛曲线示意图可以表示如下: 3、小批量梯度下降(Mini-Batch Gradient Descent, MBGD) 小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。
梯度下降 总结 ( 定义损失函数 | 损失函数求导 ) V . 梯度下降 方法 VI . 批量梯度下降法 VII . 随机梯度下降法 VIII . 小批量梯度下降法 I ....权值 和 偏置 ; ③ 伪代码实现 : //迭代循环执行下面的代码 , 每循环一次 , 梯度下降一次 , 损失函数的值就会变小一次 while true : //对损失函数进行求导 , 也就是评估梯度...常用的梯度下降方法 : ① 批量梯度下降法 : Batch Gradient Descent ; ② 随机梯度下降法 : Stochastic Gradient Descent ; ③ 小批量梯度下降法...批量梯度下降法 ---- 批量梯度下降法 : 梯度下降的最常用方法 , 反向传播误差时 , 使用误差更新参数时 , 参考所有样本的误差更新 权值 和 偏置参数 , 如果有 n 个样本 , 每次迭代时...小批量梯度下降法 ---- 小批量梯度下降法 : ① 方法引入 : 上述的批量梯度下降法 , 使用所有的样本 , 训练时间很长 , 但是预测准确度很高 ; 随机梯度下降法 , 训练速度很快 , 准确度无法保证
系数比之前多了一个分母m 批量梯度下降法,同上一篇方法,下面看随机梯度法,随机梯度通过一个样本更新所有w,类似笔记一 import pandas as pd import numpy as np import
目录 一、梯度下降概念 二、要点 三、梯度下降法求解线性回归步骤 四、使用Numpy实现一元线性回归 五、使用TensorFlow实现一元线性回归 六、总结 ---- 一、梯度下降概念 梯度下降法是一个一阶最优化算法...要使用梯度下降法找到一个函数的局部极小值,必须响函数上当前对于梯度(或者近似梯度)的反方向的规定步长居里点进行迭代搜索。所以梯度下降法可以帮助我们求解某个函数的极小值或者最小值。...对于n为问题就是最优解,梯度下降法是最常用的方法之一。 二、要点 借助 TensorFlow 的可训练变量和自动求导机制使用梯度下降法求解线性回归问题。 ?...np.random.randn()) b = tf.Variable(np.random.randn()) 第四步:训练模型 for i in range(0, iter+1): # 把线性模型和损失函数的表达式写在梯度带的...如指定64位,则得到和numpy完全相同的结果 ? ? ? 六、总结 使用TensorFlow实现梯度下降法,梯度带会自动计算损失函数的梯度而不用我们写代码实现偏导数的实现过程。
在机器学习和深度学习的优化算法中,小批量梯度下降(Mini-Batch Gradient Descent,MBGD)凭借其在计算效率和收敛稳定性之间的良好平衡而被广泛应用。...对收敛速度的影响 梯度估计准确性:较大批量大小能计算出更准确的梯度估计,使算法更新方向更接近真实最优方向,加快收敛。但回报小于线性,当批量增大到一定程度,梯度估计的准确性提升有限。...例如在训练神经网络时,小批量训练的模型对新数据的适应性可能更强。 模型稳定性:批量大小过大,模型可能过度拟合训练数据,对新数据的泛化能力下降。...而合适的批量大小能在拟合训练数据和泛化到新数据之间取得平衡,使模型更稳定,泛化性能更好。 对算法收敛特性的影响 收敛稳定性:较大批量大小能提供更稳定的梯度估计,使算法收敛过程更平稳,波动小。...还可通过实验,尝试不同批量大小,观察算法性能指标变化,找到最优值。总之,批量大小的选择是小批量梯度下降算法中一个重要且复杂的问题,需深入理解其对算法性能的影响,才能充分发挥小批量梯度下降算法的优势。
编者按:梯度下降两大痛点:陷入局部极小值和过拟合。Towards Data Science博主Devin Soni简要介绍了缓解这两个问题的常用方法。...介绍 基于梯度下降训练神经网络时,我们将冒网络落入局部极小值的风险,网络在误差平面上停止的位置并非整个平面的最低点。这是因为误差平面不是内凸的,平面可能包含众多不同于全局最小值的局部极小值。...随机梯度下降与mini-batch随机梯度下降 这些算法改编了标准梯度下降算法,在算法的每次迭代中使用训练数据的一个子集。...结语 这些改进标准梯度下降算法的方法都需要在模型中加入超参数,因而会增加调整网络所需的时间。...下图同时演示了之前提到的梯度下降变体的工作过程。注意看,和简单的动量或SGD相比,更复杂的变体收敛得更快。 ?
来自作者投稿 作者:覃佑桦 www.baeldung.com/java-gradient-descent 1.引言 文本会学习梯度下降算法。我们将分步对算法实现过程进行说明并用Java实现。...2.什么是梯度下降? 梯度下降是一种优化算法,用于查找给定函数的局部最小值。它被广泛用于高级机器学习算法中,最小化损失函数。...梯度(gradient)是坡度(slope)的另一种表达,下降(descent)表示降低。顾名思义,梯度下降随着函数的斜率下降直到抵达终点。...实践中,算法采用的是回溯(backtrack)。接下来我们将采用回溯实现梯度下降。 4.分步说明 梯度下降需要一个函数和一个起点作为输入。让我们定义并绘制一个函数: ? ? 可以从任何期望的点开始。...5.Java实现 有几种方法能够实现梯度下降。这里没有采用计算函数的导数来确定斜率的方向,因此我们的实现也适用于不可微函数。
[梯度下降算法] 几点说明 给定数据集即样本点 求出拟合的直线,给定模型f(x)=kx+b,k,b为要求的参数 定义损失函数(Loss function),回归问题里常用的是平方损失函数 初始化模型f
你将真正了解这些超参数的作用、在背后发生的情况以及如何处理使用此算法可能遇到的问题,而不是玩弄超参数并希望获得最佳结果。 然而,梯度下降并不局限于一种算法。...另外两种流行的梯度下降(随机和小批量梯度下降)建立在主要算法的基础上,你可能会看到比普通批量梯度下降更多的算法。...现在,梯度下降有不同的版本,但是你会遇到最多的是: 批量梯度下降 随机梯度下降法 小批量梯度下降 现在我们将按顺序讨论、实现和分析每一项,所以让我们开始吧! 批量梯度下降 ?...批量梯度下降可能是你遇到的第一种梯度下降类型。...批量梯度下降,500次迭代后得到27次!这只是对随机梯度下降的非凡力量的一瞥。 让我们用一个图再次将其可视化: ? 由于这是一个小数据集,批量梯度下降就足够了,但这只是显示了随机梯度下降的力量。
梯度下降是深度学习的精髓,以至于可以说深度学习又可称为gradient learning。 这里以一个简单的回归问题为例。...在初高中时,若想求得极值,则需要先求出该函数的导数。 即另y'= 0,再求得极值。而梯度下降法则是累计将x减去每次得到的导数值,而最优的x*值即为差值最小的值的点。这里的每次迭代即为梯度下降。...因此这里可以引入一个loss(损失)的概念,将方程转化为loss = (y - x**2 * sin(x))**2,这时再对loss进行求导即可使方程转化为求计算梯度求极值的问题。...total_error / float(len(sets)) # 返回累加出的平方和的均值 随后需要对各函数的梯度值进行计算, ?...= b_current - learningrate * b_gradient return [new_b, new_w] # 返回新的w和b 由此可以开始迭代所有的梯度信息, def
教程概述 本教程分为3个部分; 他们是: 什么是梯度下降? 对比3种类型的梯度下降 如何配置小批量梯度下降 什么是梯度下降?...实现过程中可以选择在小批量上对梯度进行求和,或者取梯度的平均值,这进一步降低了梯度的方差。 小批量梯度下降试图在随机梯度下降的稳健性和批梯度下降的效率之间寻求平衡。...这是在深度学习领域中使用梯度下降时最常见的实现方式。 优点 模型更新频率高于批量梯度下降,允许更稳健的收敛,避免局部最小值。 分批更新比随机梯度下降的计算效率更高。...如何配置小批量梯度下降 小批量梯度下降是大多数应用中梯度下降的推荐变体,特别是在深度学习中。 为了简洁起见,通常将小批量大小称为“批量大小”,它通常被调整到正在执行实现的计算体系结构的一个方面。...相关文章 机器学习的梯度下降 如何用随机梯度下降法实现线性回归 附加阅读 随机梯度下降,维基百科 在线机器学习,维基百科 梯度下降优化算法的概述 深度架构梯度训练的实用建议,2012 随机优化的高效小批量训练
基于前文关于梯度下降法的理解,用python实现梯度下降求解,不过本文不具有通用性,关于求导缺乏通用性,关于梯度也未考虑很多因素,可以看到学习率很低,则收敛较慢,需要大量时间学习,学习率很高,则收敛很快...:2021/8/3 1:17 ''' import matplotlib.pyplot as plt import numpy as np import math # 函数z=x^2+y^2,用梯度下降法求解...,使函数取得最小值 # 首先求梯度 (∂f/∂x,∂f/∂y)=(2x,2y) # 设定初始值位置 (x0,y0)=(3,2) # 设定学习率η= 0.1 # 设定学习次数 t=50 # z为当前位置的求解值...# data表示通过值来设置x轴的位置,将x轴绑定在y=0的位置 ax.spines['bottom'].set_position(('data', 0)) # axes表示以百分比的形式设置轴的位置...= '__main__': # 学习率0.4,下降很快 xdata, ydata, tdata = solution1(0.4) drawtrack(xdata, ydata,
梯度下降法及其Python实现 基本介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量...在处理以下步骤时,可以用批量梯度下降算法(BGD)与随机梯度下降算法(SGD)。...使用梯度下降法,越接近最小值时,下降速度越慢。计算批量梯度下降法时,计算每一个θ值都需要遍历计算所有样本,当数据量比较大时这是比较费时的计算。...随机梯度下降算法(SGD) 为解决数据量大的时批量梯度下降算法费时的困境。...算法应用和python实现 梯度下降法可以用于在前面提到的logistic回归分类器中,主要是求解模型中的cost函数,这里用泰坦尼克数据集进行演示,并且使用python中的sklearn库进行实现,代码如下
梯度下降算法是一个很基本的算法,在机器学习和优化中有着非常重要的作用,本文首先介绍了梯度下降的基本概念,然后使用Python实现了一个基本的梯度下降算法。...梯度下降有很多的变种,本文只介绍最基础的梯度下降,也就是批梯度下降。...θ是权重参数,也就是我们需要去梯度下降求解的具体值。...好了,下面到了代码实现环节,我们用Python来实现一个梯度下降算法,求解: y=2x1+x2+3 ,也就是求解: y=ax1+bx2+c 中的a,b,c三个参数 。...下面是代码: x_train是训练集x,y_train是训练集y, x_test是测试集x,运行后得到如下的图,图片显示了算法对于测试集y的预测在每一轮迭代中是如何变化的: ?
在机器学习和深度学习的领域中,梯度下降算法是优化模型参数的核心工具之一。...而批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)是梯度下降算法的三种常见变体,它们在计算效率、收敛速度和准确性等方面各有特点。...原理与计算方式 批量梯度下降(BGD):BGD在每次迭代时,都会使用整个训练数据集来计算损失函数的梯度,然后根据梯度更新模型参数。...随机梯度下降(SGD):与BGD相反,SGD每次迭代只随机选取一个样本,根据该样本计算损失函数的梯度并更新参数。...小批量梯度下降 (MBGD):MBGD则是取两者的折中,每次迭代使用一小部分样本,即一个小批量来计算梯度和更新参数。
梯度下降法(Gradient Decent)示意图如下图所示: ? 我们的目的的一步步的走向最低点,也就是损失函数的最小值。...图中损失函数的导数可以代表方向,当初始点在左侧时,导数为负,w_i+1会向右移动(也就是向最低点移动);当初始点在右侧时导数为正,w_i+1会向左移动。无论初始点在哪里都会得到一个局部最小值。...图中的\alpha(或者称作\eta)被称为学习率 (learning rate); 2)....这个值影响获得最优解的速度(如果太小,会影响收敛的速度);取值不合适可能得不到最优解(如果太大,则会跳过最小值); 3). 这是梯度下降法的一个超参数。...值得注意的是,并不是所有的函数都有唯一的极值点,这样我们得到的可能只是一个局部最优解。 解决方案: 多次运行,随机初始点。
本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导;概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码)。...迭代终止的条件是函数的梯度值为\(0\)(实际实现时是接近于\(0\)),此时认为已经达到极值点。注意我们找到的是梯度为\(0\)的点,这不一定就是极值点,后面会说明。...6 三种梯度下降的实现 批量梯度下降法:Batch Gradient Descent,简称BGD。求解梯度的过程中用了全量数据。 全局最优解;易于并行实现。 计算代价大,数据量大时,训练过程慢。...随机梯度下降法:Stochastic Gradient Descent,简称SGD。依次选择单个样本计算梯度。 优点:训练速度快; 缺点:准确度下降,并不是全局最优;不易于并行实现。...小批量梯度下降法:Mini-batch Gradient Descent,简称MBGD。每次更新参数时使用b个样本。(b一般为10)。 两种方法的性能之间取得一个折中。
批量梯度下降法BGD 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下: ...其迭代的收敛曲线示意图可以表示如下: ? 随机梯度下降法SGD 由于批量梯度下降法在更新每一个参数时,都需要所有的训练样本,所以训练过程会随着样本数量的加大而变得异常的缓慢。...小批量梯度下降法MBGD 有上述的两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?...假设我们设定为线性:Y=a0+a1X 接下来我们如何使用已知数据预测参数a0和a1呢?这里就是用了梯度下降法: ? 左侧就是梯度下降法的核心内容,右侧第一个公式为假设函数,第二个公式为损失函数。...上文使用的是批量梯度下降法,如遇到大型数据集的时候这种算法非常缓慢,因为每次迭代都需要学习全部数据集,后续推出了随机梯度下降,其实也就是抽样学习的概念。
update your weights instead 指数加权平均参考前一篇博客:https://blog.csdn.net/Solo95/article/details/84837217 使用动量的梯度下降法...如图所示,普通的梯度下降法如图中蓝色画线所示,它在接近最优值红点时,会上下摆动,导致不能很快的收敛到红点,而且如果摆动的幅度过大还会导致发散(紫色画线所示),这也是为什么不能采用很大的learning_rate...所以我们引入了指数加权平均来计算梯度的平均值,这会抵消大部分梯度的垂直方向上的摆动,同时保留水平方向上的前进速度,使其更快收敛。...使用动量的梯度下降法,“动量”,来自对它的物理上的解释,相当于在一个碗里丢一个小球,通过赋予小球动量,使其减少在碗壁上的左右摆动,让它更快到达碗底,。 使用动量的梯度下降法计算方法 ?...vdb=βvdb+(1−β)dbv_{db}=\beta v_{db}+(1-\beta)dbvdb=βvdb+(1−β)db 注意beta=0beta=0beta=0时,就退化成了普通的梯度下降。
领取专属 10元无门槛券
手把手带您无忧上云