from 《基于GIS的江苏省陆地风能资源潜力评估及微观选址》 Weibull 分布函数密度的表达式为
气象家园帖子公式参考:https://bbs.06climate.com/forum.php?mod=viewthread&tid=90527&highlight=lwc
在前面的教程中,我们已经讲解了常用的二维型数据的可视化方法。但是在日常研究中,由于大气科学属于地学系统,和地球地理信息的结合十分密切,大多数时间,需要在图形中添加地理信息。作为胶水语言,在Python中,目前还在使用的地理可视化库包尚有basemap、cartopy、geopandas等,但由于basemap是基于Python 2,而2已经不再维护,这意味着basemap也要为Python 2陪葬。而geopandas是基于pandas的,属于商务图表利器,但对于气象科研,显得力不从心。现在仅介绍basemap接班者cartopy。
Python 环境下常用的地图绘制包是 Basemap,Cartopy,geopandas,KeplerGl,GeoViews等等,我以前常用的是Basemap,但无奈官方已经在2020年更新了,官方推荐使用Cartopy作为替代。
比如,搭建开发环境这件事,算了,说多了都是泪。前段时间我发布了【cartopy入门指南】,很多朋友一运行代码就报错,也不知道哪里错了。各种奇奇怪怪的错误搞得人学不下去。
Python的绘图功能非常强大,在大气和海洋常常用来绘制一些有关地理方面的图。本片主要介绍python绘制EC数据(grib格式)的的全国降水分布图。
我与Cartopy的认识起源于“气象水文科研猫”的这个推文,那时候的我觉得,用代码画地图好酷,arcgis就感觉low爆了。但是一直没有时间学习。前段时间放暑假,磕磕绊绊装完包以后就不想动弹了,折腾环境折腾的我头皮发麻。gdal和cartopy真的是我学python以来装的最麻烦的包。
此项目的动机是为地球科学领域提供插值工具。当然也有其它库可应用于地球科学的数据插值,但是这些库基本完全是用Python编写,其性能无法满足需求。
1、网址:https://airsheet.wps.cn/docs/python/quickstart.html
该相关系数是由卡尔·皮尔逊在前人的研究基础上所提出的相关统计量,可以用来度量两个变量之间的简单线性关系。它的计算公式如下:
地图是表达国家版图最常用、最主要的形式。但在影视剧《亲爱的,热爱的》中出现了明显的错误,从上至下引起了极大的关注度。
版本:python3.7 数据:wrfout模拟数据 核心代码:metpy.calc.vorticity
对流有效位能(Convective Available Potential Energy,简称CAPE)是气象学中的一个重要概念,特别是在研究大气不稳定性和对流天气(如雷暴、龙卷风等)的形成机制时。CAPE 描述了在给定的大气状态下,如果空气团能够自由上升并通过绝热过程膨胀冷却,它所具有的潜在能量。这种能量可以被看作是由于温度层结不稳定性而储存于大气中,当条件允许时,可以转换为动能,驱动强烈的对流活动。
之前在公众号做过一个关于我国1945~2015年历史台风统计的可视化展示,发现很多有趣的数据,比如说台风登陆最多的城市是湛江。
这是我在比较久远之前看到的问题。首先必须明确一点,matplotlib的axes3D这个投影中 ,是不能用add_geometry这个功能来直接将读取到的shp文件添加上去的。add_geometry这个功能是cartopy下的geoaxes才能使用,同理add_feature也不能再3d图中使用。
有读者问如何使用wrfout绘制雷达组合反射率,其实当初刚接触wrf时小编也找了很久。既然你诚心诚意地问了
Cartopy 也是一个 python 地图绘制包,同样能完成很多 Basemap 能实现的功能,而且旨在使数据分析及可视化尽可能简单。 其利用了强大的 PROJ.4,numpy,shapely库,提供了简单直观的绘图接口,可以创建满足出版质量的地图。
大气视热源是常用于表征大气热力作用的概念,本项目会尝试使用metpy库计算大气视热源并可视化,希望能给你们一些微小的帮助。
本节提要:仿制中央气象台气象服务图片、关于cartopy里的投影与转换、cartopy中extent与boundary。
近几年,python在气象领域的发展也越来越快,同时出现了很多用于处理气象数据的python包。比如和NCL中的 WRF_ARWUser库类似的 wrf-python模块。
今天只是分享一些python库,涉及到地理数据分析,数据可视化和数据处理三个方面。
地图绘制 大家在绘制栅格地图的时候有可能还在使用ArcGIS进行出图,但是ArcGIS出图比较慢,而且批量出图的时候又比较麻烦。 今天给大家介绍一个Python中用于地图绘制的库,Cartopy,这个库跟basemap非常相似,不过basemap现在已经不再更新。所以大家使用Python绘制地图还是使用Cartopy比较好。 Cartopy简介 Cartopy是一个Python软件包,用于地理空间数据处理,以便生成地图和其他地理空间数据分析。 网址:https://scitools.org.uk/carto
在前面一节中,我们已经介绍了cartopy的大致用法——全球地图的绘制、范围的设定以及更改地理信息的精度。但是,有时候这并不能满足我们的需求,比如我作为某地级市的预报员,绘制该市降水图时,为使图片整洁,一般不希望多出其他市县。还有进行地区级别的研究,比如青藏高原地理区划将包含尼泊尔与不丹,cartopy的基础地理信息添加暂时无法做到,但是该库包已经准备了额外的接口以满足这种需求,并且比NCL更加灵活。
本文旨在实现WRFOUT的单层水汽通量散度和整层水汽通量散度计算方法。WRF(Weather Research and Forecasting)模式是一种广泛应用于天气和气候预测研究的数值模式。水汽通量散度在天气和气候研究中具有重要作用。本项目将针对WRF模式的输出数据(WRFOUT)进行处理和分析,实现单层水汽通量散度和整层水汽通量散度的计算。
导语 从90年代中期开始,人们普遍认识,对于内容索引来说,文件签名技术比反向链接效果更差。最近几年必应搜索引擎开发与部署了一套基于位分割的标签索引。这种索引(也称BitFunnel)替代了之前的基于反向索引的生产系统。这项转移背后驱动的因素是反向链接需要运转存储代价。本篇内容将讲述这项算法上的创新发明,改变传统上在云计算框架上被认为无法使用的技术。BitFunnel算法直接解决四项基础位分割块签名的限制。同时,算法的映射进入集群提供了避免和其他签名联系的代价。这里会先展示这些创新产生了比传统位分割签名
Basemap 的 mpl3d 绘制3D地图时非常强大,但目前仍然存在一些小问题,比如在填充陆地时有时会出现问题。
“ 本篇的目的在于介绍ArcGIS Pro中的深度学习,简洁清晰梳理其流程,并介绍流程中的难点。通篇是对官方文档以及同事实践经验的总结,适合入门过程,无法把握整体思路的用户。”
最近天气学原理需要绘制课本插图来做 翻转课堂,因此整理了课本第四章几个典型图片的画法和代码,共需要的人使用。
众所周知,Python的matplotlib是一个非常全面的制图库,它不仅可以绘制图表、地图,还可以绘制3D效果图,试想一下,如果你在画图的时候,可以将立体地形图作为底图,那逼格噌一下子就上来了,今天我就来教大家画一个立体地形图,啥也不说,咱先上效果图:
在气象绘图中,使用 SHP 文件经常会带来一些麻烦。为了摆脱对 SHP 文件的依赖,我们需要思考如何直接进行绘图而不受其限制。本文将介绍三种不使用 SHP 文件进行气象绘图的工具。
本节提要:使用cartopy进行市县的色块填色、模仿geopandas绘制颜色图
本章将介绍决策树,一种简单而灵活的算法。我们首先将给出决策树的非线性与基于区域的特征,然后对基于区域的损失函数进行定义与对比,最后给出这些方法的优缺点(进而引出集成方法)。
又有读者来信 要求如下: 希望小编帮忙看看能不能解决。是关于能不能在已经截取出来的省份中添加对应的dem地形呢,并且根据需要添加上需要的城市所在的地理位置,比如在已绘制的图中标注出三亚的所在地
Cartopy 利用强大的PROJ.4,numpy和shapely库,并包括基于Matplotlib构建的编程接口,用于创建出版质量地图。cartopy 的主要特点是其面向对象的投影定义,以及在这些投影之间转换点、线、向量、多边形和图像的能力。 一、下载相关wheel 网址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#cartopy
在捍卫祖国领土从每一张地图开始,Python绘制气象实用地图[Code+Data](续)中我们介绍了cartopy这个库,专门用于绘制地图和地理空间信息分析的python库,但是cartopy中的底图都是国外资源,一个是未经审核,另外调用时加载速度也会受影响。本期文章将会介绍如何在cartopy中使用天地图提供的影像,矢量和地形的图层服务。
1.使用os库循环读取文件夹下的wrf数据,并用nc库的dataset读取,可使用wrf_list = [Dataset(f) for f in wrf_files] ,wrf_files是os读取形成的文件列表
利用python中的cartopy、wrf-python等库,绘制wrf中的土地利用类型。主要使用了pcolormesh函数进行绘制,绘制效果如下:
python中有两个使用最频繁的地图绘图库:Basemap和Cartopy,两者各有优劣。由于Cartopy和matplotlib的兼容性更好,并且用户友好度更高,开始逐渐被人接受。但是Cartopy也有一些缺点,其中之一就是在设置坐标轴标签的时候对于非矩形投影无法设置标签,比如Lambert投影。
📢 版权声明:公益性质转载需联系作者本人获取授权。转载本文时,请务必文字注明“来自:和鲸社区:酷炫用户名”,并附带本项目超链接。
等值线是气象上比较常用的一种图形,特别是分析天气形势时,常用的地面气压、位势高度、气温等以等值线展示效果最好;在某些时候,我们还需要对等值线填色图进行进一步的美化。兹分别介绍之。
三个问题都是一些历史遗留问题,专门留待这一节来解决。包括画指定的等值线(如588)、如何在一个子图里绘制多个contourf、cartopy的刊误。
对比使用 Basemap,gdal 和 Cartopy,netCDF4 读取 WRF 模式数据并绘图。
基于很多同志询问添加经纬度办法,系统性重编了地图的经纬度添加方式。各种投影中以矩形投影PlateCarree最为方便,可以套用matplotlib.mticker的形式。在最新的0.18版本的cartopy中,虽然还不完善,但是终于能直接绘制兰勃脱下的标签了。墨卡托在官网上有示例。
前言 最近看完了 LSTM 的一些外文资料,主要参考了 Colah 的 blog以及 Andrej Karpathy blog的一些关于 RNN 和 LSTM 的材料,准备动手去实现一个 LSTM 模型。代码的基础框架来自于 Udacity 上深度学习纳米学位的课程(付费课程)的一个 demo,我刚开始看代码的时候真的是一头雾水,很多东西没有理解,后来反复查阅资料,并我重新对代码进行了学习和修改,对步骤进行了进一步的剖析,下面将一步步用 TensorFlow 来构建 LSTM 模型进行文本学习并试图去生
从wrfout文件中提取o3变量,并将其数据结果插值到想要的离地高度层上(示例中是1km、3km、5km、10km),进行可视化。下面提供示例代码,其中用虚线----框住的部分是插值的关键代码。
论文翻译:ViBe+算法(ViBe算法的改进版本) 原文地址: 《Background Subtraction: Experiments and Improvements for ViBe》 本文
随机森林是最流行、最强大的机器学习算法之一。它是机器学习集成算法中的一种,可称之为自助集成(Bootstrap Aggregation)或袋装法(Bagging)。
本节提要:关于等值线的一些操作,解决等值线标签无法正常显示的问题,等值线填色图的阴影操作。
cnmaps经过很多小伙伴的反馈和协作开发,目前更新了一个小版本到1.1。增加了一些新的功能,同时做了一些优化,下面我们快速看一下都有哪些变化。
领取专属 10元无门槛券
手把手带您无忧上云