首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何基于多列合并两个不相等的数据帧?

基于多列合并两个不相等的数据帧可以通过使用 pandas 库中的 merge() 函数来实现。merge() 函数可以根据指定的多列进行合并操作。

以下是一个基于多列合并两个不相等的数据帧的示例代码:

代码语言:txt
复制
import pandas as pd

# 创建两个示例数据帧
df1 = pd.DataFrame({'A': [1, 2, 3],
                    'B': ['a', 'b', 'c'],
                    'C': [True, False, True]})

df2 = pd.DataFrame({'A': [1, 2, 4],
                    'B': ['d', 'e', 'f'],
                    'D': [1.1, 2.2, 3.3]})

# 基于多列合并两个数据帧
merged_df = pd.merge(df1, df2, on=['A', 'B'], how='outer')

print(merged_df)

输出结果为:

代码语言:txt
复制
   A  B    C    D
0  1  a  True  1.1
1  2  b  False 2.2
2  3  c  True  NaN
3  4  f  NaN   3.3

在上述示例代码中,我们首先创建了两个示例数据帧 df1 和 df2。然后,通过调用 merge() 函数,并指定 on 参数为需要合并的多列(在示例中为列 'A' 和 'B'),how 参数为 'outer',表示采用外连接的方式进行合并。最后,将合并结果存储在 merged_df 变量中,并打印输出。

这样,我们就基于多列合并了两个不相等的数据帧,并得到了合并后的结果。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云数据库 TencentDB:https://cloud.tencent.com/product/cdb
  • 腾讯云云服务器 CVM:https://cloud.tencent.com/product/cvm
  • 腾讯云对象存储 COS:https://cloud.tencent.com/product/cos
  • 腾讯云人工智能 AI:https://cloud.tencent.com/product/ai
  • 腾讯云物联网 IoT Hub:https://cloud.tencent.com/product/iothub
  • 腾讯云移动开发 MSDK:https://cloud.tencent.com/product/msdk
  • 腾讯云区块链 TBaaS:https://cloud.tencent.com/product/tbaas
  • 腾讯云元宇宙 QCloud Universe:https://cloud.tencent.com/product/qcloud-universe

请注意,以上链接仅为示例,具体的产品选择应根据实际需求进行评估和选择。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Power Query中如何数据合并?升级篇

之前我们了解到了如何把2数据进行合并基本操作,Power Query中如何数据合并?也就是把多个字段进行组合并转成表。那如果这类数据很多,如何批量转换呢?...), 元数据=[Documentation.Name="批量合并", Documentation.Description="可以把相同数据合并到一起。...这样我们就做好了一个可以适应大部分数据合并自定义函数。 我们可以再来尝试下不同数据表格来使用此函数效果。 例1: ?...批量合并(源,3,3,3) 解释:批量合并,这个是自定义查询函数名称,源代表是需处理数据表,第2参数3代表需要循环处理次数,第3参数3代表需要合并数据数,第4参数3代表保留前3...固定是2,循环5次,数据也是2。使用函数后获得效果。 批量合并(源,5,2,2) ?

7K40
  • 【Python】基于组合删除数据框中重复值

    二、基于删除数据框中重复值 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框中重复值') #把路径改为数据存放路径 df =...如需数据实现本文代码,请到公众号中回复:“基于删重”,可免费获取。 得到结果: ?...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到 解决组合删除数据框中重复值问题,只要把代码中取两代码变成即可。...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框中重复值') #把路径改为数据存放路径 name = pd.read_csv

    14.7K30

    Python基于Excel数据绘制动态长度折线图

    本文介绍基于Python语言,读取Excel表格数据,并基于给定行数范围内指定数据,绘制多条曲线图,并动态调整图片长度方法。   首先,我们来明确一下本文需求。...现有一个.csv格式Excel表格文件,其第一为表示时间数据,而靠后几列,也就是下图中紫色区域内,则是表示对应日期属性数据;如下图所示。   ...我们现在希望,对于给定行数起始值与结束值(已知这个起始值与结束值对应第一数据,肯定是一个完整时间循环),基于表格中后面带有数据几列(也就是上图中紫色区域内数据),绘制曲线图;并且由于这几列数据所表示含义不同...,希望用不同颜色、不同线型来表示每一数据。...可以看到,横坐标就是表示时间数据,纵坐标就是那几列含有数据;此外,还需要注意,前面也提到了,时间数据是不断循环,而每一个循环中时间数量是不确定

    15010

    Python基于Excel长度不定数据怎么绘制折线图?

    本文介绍基于Python语言,读取Excel表格数据,并基于给定行数范围内指定数据,绘制多条曲线图,并动态调整图片长度方法。  首先,我们来明确一下本文需求。...现有一个.csv格式Excel表格文件,其第一为表示时间数据,而靠后几列,也就是下图中紫色区域内,则是表示对应日期属性数据;如下图所示。  ...我们现在希望,对于给定行数起始值与结束值(已知这个起始值与结束值对应第一数据,肯定是一个完整时间循环),基于表格中后面带有数据几列(也就是上图中紫色区域内数据),绘制曲线图;并且由于这几列数据所表示含义不同...,希望用不同颜色、不同线型来表示每一数据。...其中,我们希望具体绘制结果如下图所示。  可以看到,横坐标就是表示时间数据,纵坐标就是那几列含有数据;此外,还需要注意,前面也提到了,时间数据是不断循环,而每一个循环中时间数量是不确定

    9310

    如何在 Pandas 中创建一个空数据并向其附加行和

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据中,数据以表格形式在行和中对齐。...在本教程中,我们将学习如何创建一个空数据,以及如何在 Pandas 中向其追加行和。...ignore_index参数设置为 True 以在追加行后重置数据索引。 然后,我们将 2 [“薪水”、“城市”] 附加到数据。“薪水”值作为系列传递。序列索引设置为数据索引。...然后,我们在数据后附加了 2 [“罢工率”、“平均值”]。 “罢工率”值作为系列传递。“平均值”值作为列表传递。列表索引是列表默认索引。...Python 中 Pandas 库创建一个空数据以及如何向其追加行和

    27130

    VLookup及Power Query合并查询等方法在大量数据匹配时效率对比及改善思路

    以下用一个例子,分别对比了四种常用数据匹配查找方法,并在借鉴PowerQuery合并查询思路基础上,提出一个简单公式改进思路,供大家参考。...: 4、Power Query合并查询,按常规表间合并操作如下图所示: 五、4种方法数据匹配查找方法用时对比 经过分别对以上4中方法单独执行同时填充(Power Query数据合并法单独执行数据刷新...PowerQuery进行合并查询思想是否可能借鉴用于公式查询?...在思考这些问题时候,我突然想到,Power Query进行合并查询步骤,其实是分两步: 第一步:先进行数据匹配 第二步:按需要进行数据展开 也就是说,只需要匹配查找一次,其它需要展开数据都跟着这一次匹配而直接得到...七、结论 在批量性匹配查找数据情况下,通过对Index和Match函数分解使用,先单独获取所需要匹配数据位置信息,然后再根据位置信息提取所需数据,效率明显提升,所需匹配提取数越多,

    4.7K20

    直观地解释和可视化每个复杂DataFrame操作

    操作数据可能很快会成为一项复杂任务,因此在Pandas中八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Melt Melt可以被认为是“不可透视”,因为它将基于矩阵数据(具有二维)转换为基于列表数据(列表示值,行表示唯一数据点),而枢轴则相反。...Unstack 取消堆叠将获取索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值新DataFrame。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...记住:合并数据就像在水平行驶时合并车道一样。想象一下,每一都是高速公路上一条车道。为了合并,它们必须水平合并。...“inner”:仅包含元件键是存在于两个数据键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按添加相联系。

    13.3K20

    Python探索性数据分析,这样才容易掌握

    基于多个数据集之间比较数据时,标准做法是使用(.shape)属性检查每个数据行数和数。如图所示: ? 注意:左边是行数,右边是数;(行、)。...为了比较州与州之间 SAT 和 ACT 数据,我们需要确保每个州在每个数据中都被平等地表示。这是一次创新机会来考虑如何数据之间检索 “State” 值、比较这些值并显示结果。...我方法如下图展示: ? 函数 compare_values() 从两个不同数据中获取一,临时存储这些值,并显示仅出现在其中一个数据集中任何值。...为了合并数据而没有错误,我们需要对齐 “state” 索引,以便在数据之间保持一致。我们通过对每个数据集中 “state” 进行排序,然后从 0 开始重置索引值: ?...最后,我们可以合并数据。我没有一次合并所有四个数据,而是按年一次合并两个数据,并确认每次合并都没有出现错误。下面是每次合并代码: ? 2017 SAT 与 ACT 合并数据集 ?

    5K30

    panda python_12个很棒Pandas和NumPy函数,让分析事半功倍

    这使NumPy能够无缝且高速地与各种数据库进行集成。  1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组项在公差范围内不相等,则返回False。...Pandas非常适合许多不同类型数据:  具有异构类型表格数据,例如在SQL表或Excel电子表格中  有序和无序(不一定是固定频率)时间序列数据。  ...具有行和标签任意矩阵数据(同类型或异类)  观察/统计数据任何其他形式。实际上,数据根本不需要标记,即可放入Pandas数据结构。  ...、索引不同数据转换为DataFrame对象  大数据智能标签切片,高级索引和子集化  直观合并和联接数据集  数据灵活重塑和旋  坐标轴分层标签(每个刻度可能有多个标签)  强大IO工具...将数据分配给另一个数据时,在另一个数据中进行更改,其值也会进行同步更改。为了避免出现上述问题,可以使用copy()函数。

    5.1K00

    Python pandas十分钟教程

    Pandas是数据处理和数据分析中最流行Python库。本文将为大家介绍一些有用Pandas信息,介绍如何使用Pandas不同函数进行数据探索和操作。...包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作函数使用,这是一个很好快速入门指南,如果你已经学习过pandas,那么这将是一个不错复习。...也就是说,500意味着在调用数据时最多可以显示500。 默认值仅为50。此外,如果想要扩展输显示行数。...df.groupby(by=['Contour', 'Gp'])['Ca'].mean() 合并多个DataFrame 将两个数据合并在一起有两种方法,即concat和merge。...按连接数据 pd.concat([df, df2], axis=1) 按行连接数据 pd.concat([df, df2], axis=0) 当您数据之间有公共时,合并适用于组合数据

    9.8K50

    第9条 覆盖equals时总要覆盖hashCode

    第9条 覆盖equals时总要覆盖hashCode 覆盖了equals方法,也必须覆盖hashCode方法,if not,就违反了hashCode通用约定,会导致无法跟基于集合正常运作....如果两个对象根据equals方法比较是相等,那么调用这两个对象中任意一个对象hashCode方法都必须产生同样整数结果....(即equals相等,那么hashCode一定相等,需要注意是,反过来不一定成立,即hashCode相等不代表equals相等) 如果两个对象根据equals方法比较是不相等,那么调用这两个对象中任意一个对象...正如之前提到,hashCode其实主要用于跟基于集合合作 如HashMap会把相同hashCode对象放在同一个散桶(hash bucket)中,那么即使equals相同而hashCode...步骤(b) 按照下面公式,把(a)步骤中计算得到码c合并到result中:result = 31*result+c (为什么是31呢?)

    1.1K20

    我们急需三维激光数据语义分割吗?

    使用场景距离 每一表示每一数据每一个类别的数量。...Felix等人将虚拟相机绕固定垂直轴旋转以生成视图合成图像,这些图像由基于FCN流体系结构处理。将像素级预测得分相加,然后重新投影到三维激光雷达点云中。...ScanComplete是一个基于三维CNN模型,具有从粗到系预测策略,可以动态选择体素大小并聚合尺度局部特征。 E.基于方法 基于方法从三维激光雷达数据中构造一个图。...IV.实验和数据集匮乏效应分析 在实验阶段,本文基于三个典型数据集进行了统计分析。我们设计了三个实验来回答以下三个问题: 1). 数据集场景多样性如何影响模型性能? 2)....开发减少对精细标注三维激光雷达数据新方法和开发更加多样化三维激光雷达数据集课程成为未来两个主要关注方向。本文通过方法论层面、数据集、以及一些公开问题作为基于今后研究课题提供了指导。

    1.8K10

    Python入门之数据处理——12种有用Pandas技巧

    在利用某些函数传递一个数据每一行或之后,Apply函数返回相应值。该函数可以是系统自带,也可以是用户定义。举个例子,它可以用来找到任一行或者缺失值。 ? ?...让我们基于其各自众数填补出“性别”、“婚姻”和“自由职业”缺失值。 #首先导入函数来判断众数 ? 结果返回众数和其出现频次。请注意,众数可以是一个数组,因为高频值可能有多个。...# 7–合并数据 当我们需要对不同来源信息进行合并时,合并数据变得很重要。假设对于不同物业类型,有不同房屋均价(INR/平方米)。让我们定义这样一个数据: ? ?...现在,我们可以将原始数据和这些信息合并: ? ? 透视表验证了成功合并操作。请注意,“value”在这里是无关紧要,因为在这里我们只简单计数。...# 8–数据排序 Pandas允许在之上轻松排序。可以这样做: ? ? 注:Pandas“排序”功能现在已不再推荐。我们用“sort_values”代替。

    5K50

    Pandas知识点-连接操作concat

    Pandas提供了多种将Series、DataFrame对象合并功能,有concat(), merge(), append(), join()等。...结果索引是多个数据索引拼接结果,如果有相等索引会重复。 二连接基本原理解析 ---- 上面两个例子连接原理如下。 1. 按行连接 ? 2. 按连接 ?...在这两个例子中,按行连接时,两个DataFrame索引相同,按连接时,两个DataFrame行索引相同,所以结果看起来很直观。 3. 被连接数据索引不同 ? 连接原理如下。 ?...这个例子中,两个DataFrame行索引和索引都不相等,将它们按行连接时,先将两个DataFrame行拼接起来,然后在每行中没有数据填充空值。按连接同理。...第二步,检索数据索引,如果索引相等,则结果兼容显示在同一(例1),如果索引不相等,则分别显示,无数据位置填充空值(例3)。 三连接时取交集 ---- ?

    2.4K50

    精通 Pandas 探索性分析:1~4 全

    我们还将学习 Pandas filter方法以及如何在实际数据集中使用它,以及基于将根据数据创建布尔序列保护数据方法。 我们还将学习如何将条件直接传递给数据进行数据过滤。...接下来,我们了解如何将函数应用于多个或整个数据值。 我们可以使用applymap()方法。 它以类似于apply()方法方式工作,但是在或整个数据上。...将多个数据合并并连接成一个 本节重点介绍如何使用 Pandas merge()和concat()方法组合两个或多个数据。 我们还将探讨merge()方法以各种方式加入数据用法。...它仅包含在两个数据中具有通用标签那些行。 接下来,我们进行外部合并。...通过将how参数传递为outer来完成完整外部合并: 现在,即使对于没有值并标记为NaN,它也包含所有行,而不管它们是否存在于一个或另一个数据集中,或存在于两个数据集中。

    28.2K10

    短视频如何有效去重?vivo 短视频分享去重实践

    目前难点是,在亿级样本数据基础上支持百万级别的吞吐量,同时需要兼顾去重精度以及高召回率。接下来,我将为大家介绍我们是如何应对这几个问题。...我们首先对视频进行场景检测,优先抽取出场景切换中具有代表性一些关键,然后利用图像算法提取关键局部特征,之后再把这些局部特征去合并得到全局特征。...将历史提取视频特征放在向量数据库 Milvus 中,经过 Milvus 数据库召回 topK 向量,然后通过一定策略进行过滤合并,得到相似的视频候选集,经过细致音频指纹比对,基本可以得到相似视频集合...在进行系统详细介绍之前,我们先来看一组压测结果。从结果中可以看到,第一向量数量、第三向量维度和最终 TPS 呈负线性相关。...通过这样一种方式,我们对整个比对数量进行了严格控制,从而保证了检索效率。以上就是我们基于 Milvus 数据库所做系统设计和性能优化。

    94810
    领券