首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在xgboost的github存储库的自定义目标函数示例脚本中计算对数损失的梯度和hessian?

在xgboost的github存储库的自定义目标函数示例脚本中,计算对数损失的梯度和Hessian可以按照以下步骤进行:

  1. 导入必要的库和模块:
代码语言:python
代码运行次数:0
复制
import numpy as np
import xgboost as xgb
  1. 定义自定义目标函数:
代码语言:python
代码运行次数:0
复制
def log_loss_obj(preds, dtrain):
    labels = dtrain.get_label()
    preds = 1.0 / (1.0 + np.exp(-preds))  # 将预测值转换为概率
    grad = preds - labels  # 计算梯度
    hess = preds * (1.0 - preds)  # 计算Hessian
    return grad, hess
  1. 加载数据集并创建DMatrix对象:
代码语言:python
代码运行次数:0
复制
data = np.random.rand(100, 10)
labels = np.random.randint(2, size=100)
dtrain = xgb.DMatrix(data, label=labels)
  1. 设置参数并训练模型:
代码语言:python
代码运行次数:0
复制
params = {'objective': log_loss_obj, 'eval_metric': 'logloss'}
model = xgb.train(params, dtrain, num_boost_round=10)

在这个示例脚本中,自定义目标函数log_loss_obj计算了对数损失的梯度和Hessian。首先,通过dtrain.get_label()获取训练数据的真实标签。然后,将预测值转换为概率,使用预测值和真实标签计算梯度和Hessian。最后,将自定义目标函数log_loss_obj作为参数传递给xgb.train()函数,训练模型。

请注意,这只是一个示例脚本,实际使用时需要根据具体的问题和数据进行适当的修改和调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

自定义损失函数Gradient Boosting

忽略恢复时间错误的含义 另外: 找到一个与你的商业目标紧密匹配的损失函数。通常,这些损失函数在流行的机器学习库中并没有默认的实现。但是没关系: 定义自己的损失函数并使用它来解决问题并不难。...在梯度提升的背景下,训练损失是利用梯度下降法进行优化的函数,如梯度提升模型的“梯度”部分。具体来说,使用训练损失的梯度来改变每个连续树的目标变量。(如果你对更多细节感兴趣,请看这篇文章。)...下图展示了我们的自定义损失函数与标准MSE损失函数的对比。 ? 正如定义的那样,非对称MSE很好,因为它很容易计算梯度和hessian,如下图所示。...其他的梯度提升包,包括XGBoost和Catboost,也提供了这个选项。这里是一个Jupyter笔记本,展示了如何实现自定义培训和验证损失函数。细节在笔记本上,但在高层次上,实现略有不同。...1、训练损失:在LightGBM中定制训练损失需要定义一个包含两个梯度数组的函数,目标和它们的预测。反过来,该函数应该返回梯度的两个梯度和每个观测值的hessian数组。

7.8K30

机器学习中常用的5种回归损失函数,你都用过吗?

它的计算方式是预测误差的双曲余弦的对数。 ? ? Log-cosh损失(Y轴)与预测值(X轴)图示。...它具有Huber损失所有的优点,但不同于Huber损失的是,Log-cosh二阶处处可微。 为什么需要二阶导数?许多机器学习模型如XGBoost,就是采用牛顿法来寻找最优点。...而牛顿法就需要求解二阶导数(Hessian)。因此对于诸如XGBoost这类机器学习框架,损失函数的二阶可微是很有必要的。 ? XgBoost中使用的目标函数。...注意对一阶和二阶导数的依赖性 但Log-cosh损失也并非完美,其仍存在某些问题。比如误差很大的话,一阶梯度和Hessian会变成定值,这就导致XGBoost出现缺少分裂点的情况。...分位数损失(Y轴)与预测值(X轴)图示。Y的真值为0 这个损失函数也可以在神经网络或基于树的模型中计算预测区间。以下是用Sklearn实现梯度提升树回归模型的示例。 ?

93840
  • 机器学习中常用的5种回归损失函数,你都用过吗?

    它的计算方式是预测误差的双曲余弦的对数。 ? ? Log-cosh损失(Y轴)与预测值(X轴)图示。...它具有Huber损失所有的优点,但不同于Huber损失的是,Log-cosh二阶处处可微。 为什么需要二阶导数?许多机器学习模型如XGBoost,就是采用牛顿法来寻找最优点。...而牛顿法就需要求解二阶导数(Hessian)。因此对于诸如XGBoost这类机器学习框架,损失函数的二阶可微是很有必要的。 ? XgBoost中使用的目标函数。...注意对一阶和二阶导数的依赖性 但Log-cosh损失也并非完美,其仍存在某些问题。比如误差很大的话,一阶梯度和Hessian会变成定值,这就导致XGBoost出现缺少分裂点的情况。...分位数损失(Y轴)与预测值(X轴)图示。Y的真值为0 这个损失函数也可以在神经网络或基于树的模型中计算预测区间。以下是用Sklearn实现梯度提升树回归模型的示例。 ?

    1.7K10

    如何选择合适的损失函数

    如何选择合适的损失函数 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...许多机器学习模型的实现(如XGBoost)使用牛顿方法来寻找最优解,这就是为什么需要二阶导数(Hessian)的原因。对于像XGBoost这样的机器学习框架,二阶可导函数更有利。...XGBoost中使用的目标函数。注意其对一阶和二阶导数的依赖性。 但Log-chsh Loss并不完美。它仍然存在梯度和Hessian问题,对于误差很大的预测,其梯度和hessian是恒定的。...真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。...使用Quantile Loss的预测区间(梯度提升回归) 上图显示的是sklearn库的GradientBoostingRegression中的quantile loss函数计算的90%预测区间。

    18510

    到底该如何选择损失函数?

    机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...许多机器学习模型的实现(如XGBoost)使用牛顿方法来寻找最优解,这就是为什么需要二阶导数(Hessian)的原因。对于像XGBoost这样的机器学习框架,二阶可导函数更有利。 ?...XGBoost中使用的目标函数。注意其对一阶和二阶导数的依赖性。 但Log-chsh Loss并不完美。它仍然存在梯度和Hessian问题,对于误差很大的预测,其梯度和hessian是恒定的。...真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。 ?...使用Quantile Loss的预测区间(梯度提升回归) 上图显示的是sklearn库的GradientBoostingRegression中的quantile loss函数计算的90%预测区间。

    2.3K50

    机器学习大牛最常用的5个回归损失函数,你知道几个?

    它的计算方式是预测误差的双曲余弦的对数。 Log-cosh损失(Y轴)与预测值(X轴)图示。...它具有Huber损失所有的优点,但不同于Huber损失的是,Log-cosh二阶处处可微。 为什么需要二阶导数?许多机器学习模型如XGBoost,就是采用牛顿法来寻找最优点。...而牛顿法就需要求解二阶导数(Hessian)。因此对于诸如XGBoost这类机器学习框架,损失函数的二阶可微是很有必要的。 XgBoost中使用的目标函数。...注意对一阶和二阶导数的依赖性 但Log-cosh损失也并非完美,其仍存在某些问题。比如误差很大的话,一阶梯度和Hessian会变成定值,这就导致XGBoost出现缺少分裂点的情况。...分位数损失(Y轴)与预测值(X轴)图示。Y的真值为0 这个损失函数也可以在神经网络或基于树的模型中计算预测区间。以下是用Sklearn实现梯度提升树回归模型的示例。

    1.3K40

    如何选择合适的损失函数,请看......

    机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...许多机器学习模型的实现(如XGBoost)使用牛顿方法来寻找最优解,这就是为什么需要二阶导数(Hessian)的原因。对于像XGBoost这样的机器学习框架,二阶可导函数更有利。...XGBoost中使用的目标函数。注意其对一阶和二阶导数的依赖性。 但Log-chsh Loss并不完美。它仍然存在梯度和Hessian问题,对于误差很大的预测,其梯度和hessian是恒定的。...真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。...使用Quantile Loss的预测区间(梯度提升回归) 上图显示的是sklearn库的GradientBoostingRegression中的quantile loss函数计算的90%预测区间。

    1.1K10

    如何选择合适的损失函数,请看......

    许多机器学习模型的实现(如XGBoost)使用牛顿方法来寻找最优解,这就是为什么需要二阶导数(Hessian)的原因。对于像XGBoost这样的机器学习框架,二阶可导函数更有利。 ?...XGBoost中使用的目标函数。注意其对一阶和二阶导数的依赖性。 但Log-chsh Loss并不完美。它仍然存在梯度和Hessian问题,对于误差很大的预测,其梯度和hessian是恒定的。...真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。 ?...使用Quantile Loss的预测区间(梯度提升回归) 上图显示的是sklearn库的GradientBoostingRegression中的quantile loss函数计算的90%预测区间。...用有噪声的sinc(x)数据来拟合平滑GBM的示例:(E)原始sinc(x)函数; (F)以MSE和MAE为损失拟合的平滑GBM; (G)以Huber Loss拟合的平滑GBM, = {4,2,1};

    1.1K20

    如何选择合适的损失函数,请看......

    翻译 | 张建军 编辑 | 阿司匹林 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...许多机器学习模型的实现(如XGBoost)使用牛顿方法来寻找最优解,这就是为什么需要二阶导数(Hessian)的原因。对于像XGBoost这样的机器学习框架,二阶可导函数更有利。...XGBoost中使用的目标函数。注意其对一阶和二阶导数的依赖性。 但Log-chsh Loss并不完美。它仍然存在梯度和Hessian问题,对于误差很大的预测,其梯度和hessian是恒定的。...真值为Y= 0 我们也可以使用这个损失函数来计算神经网络或基于树的模型的预测区间。下图是sklearn实现的梯度提升树回归。...使用Quantile Loss的预测区间(梯度提升回归) 上图显示的是sklearn库的GradientBoostingRegression中的quantile loss函数计算的90%预测区间。

    1.9K10

    终于有人把XGBoost 和 LightGBM 讲明白了,项目中最主流的集成算法!

    我们知道模型的预测精度由模型的偏差和方差共同决定,损失函数代表了模型的偏差,想要方差小则需要简单的模型,所以目标函数由模型的损失函数 L 与抑制模型复杂度的正则项 组成,所以我们有: 为模型的正则项...我们以平方损失函数为例: 则: 由于在第 t 步时 其实是一个已知的值,所以 是一个常数,其对函数的优化不会产生影响,因此目标函数可以写成: 所以我们只需要求出每一步损失函数的一阶导和二阶导的值(由于前一步的...XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数; 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART...此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导; 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。...1.3.2 缺点 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集; 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,

    5K21

    终于有人把XGBoost 和 LightGBM 讲明白了,项目中最主流的集成算法!

    我们知道模型的预测精度由模型的偏差和方差共同决定,损失函数代表了模型的偏差,想要方差小则需要简单的模型,所以目标函数由模型的损失函数 L 与抑制模型复杂度的正则项 组成,所以我们有: 为模型的正则项...我们以平方损失函数为例: 则: 由于在第 t 步时 其实是一个已知的值,所以 是一个常数,其对函数的优化不会产生影响,因此目标函数可以写成: 所以我们只需要求出每一步损失函数的一阶导和二阶导的值(由于前一步的...XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数; 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART...此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导; 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。...1.3.2 缺点 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集; 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,

    5.5K20

    终于有人把XGBoost 和 LightGBM 讲明白了,项目中最主流的集成算法!

    我们知道模型的预测精度由模型的偏差和方差共同决定,损失函数代表了模型的偏差,想要方差小则需要简单的模型,所以目标函数由模型的损失函数 L 与抑制模型复杂度的正则项 组成,所以我们有: 为模型的正则项...我们以平方损失函数为例: 则: 由于在第 t 步时 其实是一个已知的值,所以 是一个常数,其对函数的优化不会产生影响,因此目标函数可以写成: 所以我们只需要求出每一步损失函数的一阶导和二阶导的值(由于前一步的...XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数; 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART...此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导; 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。...1.3.2 缺点 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集; 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,

    1.6K10

    【ML】项目中最主流的集成算法XGBoost 和 LightGBM

    我们知道模型的预测精度由模型的偏差和方差共同决定,损失函数代表了模型的偏差,想要方差小则需要简单的模型,所以目标函数由模型的损失函数 L 与抑制模型复杂度的正则项 组成,所以我们有: 为模型的正则项...我们以平方损失函数为例: 则: 由于在第 t 步时 其实是一个已知的值,所以 是一个常数,其对函数的优化不会产生影响,因此目标函数可以写成: 所以我们只需要求出每一步损失函数的一阶导和二阶导的值(由于前一步的...XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数; 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART...此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导; 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。...1.3.2 缺点 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集; 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,

    63610

    终于有人把XGBoost 和 LightGBM 讲明白了,项目中最主流的集成算法!

    我们知道模型的预测精度由模型的偏差和方差共同决定,损失函数代表了模型的偏差,想要方差小则需要简单的模型,所以目标函数由模型的损失函数 L 与抑制模型复杂度的正则项 组成,所以我们有: 为模型的正则项...我们以平方损失函数为例: 则: 由于在第 t 步时 其实是一个已知的值,所以 是一个常数,其对函数的优化不会产生影响,因此目标函数可以写成: 所以我们只需要求出每一步损失函数的一阶导和二阶导的值(由于前一步的...XGBoost 引入二阶导一方面是为了增加精度,另一方面也是为了能够自定义损失函数,二阶泰勒展开可以近似大量损失函数; 灵活性更强:GBDT 以 CART 作为基分类器,XGBoost 不仅支持 CART...此外,XGBoost 工具支持自定义损失函数,只需函数支持一阶和二阶求导; 正则化:XGBoost 在目标函数中加入了正则项,用于控制模型的复杂度。...1.3.2 缺点 虽然利用预排序和近似算法可以降低寻找最佳分裂点的计算量,但在节点分裂过程中仍需要遍历数据集; 预排序过程的空间复杂度过高,不仅需要存储特征值,还需要存储特征对应样本的梯度统计值的索引,

    1.2K20

    深入了解CatBoost:自定义目标函数与度量的高级教程

    在机器学习领域,CatBoost是一个备受欢迎的梯度提升库,它以其出色的性能和灵活性而闻名。...尽管CatBoost提供了许多内置的目标函数和度量指标,但有时候我们可能需要根据特定的问题定制自己的目标函数和度量指标。在本教程中,我们将深入探讨如何在CatBoost中自定义目标函数和度量指标。...这里我们以二分类问题为例,假设我们的模型输出为概率值,并使用逻辑损失函数。 3. 度量指标的自定义 除了自定义目标函数,我们还可以自定义度量指标。...然后我们使用随机生成的数据进行训练,并计算准确率作为模型的性能度量。 通过以上步骤,我们成功地实现了在CatBoost中自定义目标函数和度量指标的功能。...这种灵活性使得CatBoost成为了解决各种复杂问题的有力工具。 希望本教程能够帮助你更好地理解如何在CatBoost中进行自定义目标函数和度量指标的设置。祝你在机器学习的旅程中取得成功!

    39610

    理解XGBoost

    以AdaBoost算法为例,强分类器对单个训练样本的损失为指数损失函数 ? 将广义加法模型的预测函数代入上面的损失函数中,得到算法训练时要优化的目标函数为 ?...从初始点x0处开始,反复计算函数在处的Hessian矩阵和梯度向量,然后用下面的公式进行迭代: ? 最终会到达函数的驻点处。其中-H-1g称为牛顿方向。...迭代终止的条件是梯度的模接近于0,或者函数值下降小于指定阈值。对于一元函数,Hessian矩阵即为二阶导数,梯度向量即为一阶导数,迭代公式为 ? 在XGBoost的推导中将会使用此方法。...XGBoost XGBoost是对梯度提升算法的改进,求解损失函数极值时使用了牛顿法,将损失函数泰勒展开到二阶,另外在损失函数中加入了正则化项。...训练时的目标函数由两部分构成,第一部分为梯度提升算法损失,第二部分为正则化项。XGBoost的损失函数定义为 ?

    1.3K50

    为什么XGBoost在机器学习竞赛中表现如此卓越?

    实际上 AdaBoost 是最小化指数损失函数,并迭代式地在加权的数据上训练弱学习器。研究者也提出过最小化对数损失的二阶近似的新型 boosting 算法:LogitBoost。...这篇论文讨论了两种主要的数值优化方法:梯度提升和牛顿提升(也被称为二阶梯度提升或 Hessian boosting,因为其中应用了 Hessian 矩阵)。...其中我们令 L_j hat 表示节点 j 处的累积损失。在学习过程中,当前树模型用 f_before hat 和 f_after hat 表示。 我们可以计算所考虑的分割所带来的增益: ?...在损失函数的应用性方面,牛顿树提升因为要使用 Hessian 矩阵,所以要求损失函数是二次可微的。所以它在选择损失函数上要求更加严格,必须要是凸的。...因此,如果我们使用平方误差损失函数之外的任何损失函数,在牛顿树提升的帮助下,XGBoost 应该能更好地学习树结构。只是梯度树提升在后续的叶权重上更加准确。因此无法在数学上对它们进行比较。

    85750

    一文详尽XGBOOST的前世今生

    决策树剪枝算法的根本目的是极小化损失函数(经验损失+结构损失),基本策略有”预剪枝“和”后剪枝“两种策略:①预剪枝:是在决策树生成过程中,限制划分的最大深度、叶子节点数和最小样本数目等,以减少不必要的模型复杂度...;②后剪枝:先从训练集生成一棵完整的决策树,然后用用验证集自底向上地对非叶结点进行考察,若将该节点对应的子树替换为叶子结点(剪枝)能带来决策树的泛化性能提升(即目标函数损失更小,常用目标函数如:loss...损失函数如下图所示: 通过泰勒泰勒展开,树的生长是直接与损失函数挂钩xgboost使用二阶泰勒展开能够适用自定义的损失函数obj,利用泰勒展开三项做一个近似。...对于这个目标函数obj求导等于0,可以得到一个叶子节点权重w* 代入obj得到了叶子结点取值的表达式 目标函数obj中的各部分,表示着每一个叶子节点对当前模型损失的贡献程度。...融合一下,得到Gain的计算表达式,如下所示: 树的生长的过程,即是利用推导出的表达式作为分裂准则,对于所有的特征做一遍从左到右的扫描就可以枚举出所有分割取值点的梯度和GL和GR,然后用计算Gain的公式计算每个分割方案的分数并选择增益最大的分裂点

    83530

    数据分析利器:XGBoost算法最佳解析

    在LR模型中,首先,对于回归问题构造平方项损失,对于分类问题构造最大似然损失作为目标函数,然后基于构造好的目标函数,才会考虑采用梯度下降算法进行优化求解,比如随机梯度下降、Mini-Batch批量梯度下降...这样做的好处是便于后面优化求解。 令,,带入到目标函数公式4,得到基于二阶泰勒展开式的函数(如公式5所示),其中,。 在训练第颗树时,目标函数(公式5)中,,、是已知的。...将等式9带入到公式8中,计算得到树的目标损失值(如等式10),该等式表示决策树损失分数,分数越小,说明树的预测准确度越高、复杂度越低。 4.如何确定树的形状?...另外,对目标函数进行泰勒展开,可以使得XGBoost支持自定义损失函数,只需要新的损失函数二阶可导即可,从而提升算法框架的扩展性。...如果设置最大的Block来存储所有样本在特征上的值和梯度,Cache未必能一次性处理如此多的梯度做统计。如果设置过小的Block-size,这样不能充分利用多线程的优势。

    2K20

    布客·ApacheCN 翻译校对活动进度公告 2020.5

    @miaoxiaozui2017 十、建模与估计 - - 模型 损失函数 绝对损失和 Huber 损失 十一、梯度下降与数值优化 - - 使用程序最小化损失 梯度下降 凸性...3.2 线性函数 3.3 线性 第四章:函数的二次型和导数 4.1 更复杂的函数 4.2 二次函数的斜率 第 5 章:有理函数和导数的计算 5.1 有理函数的导数 第 6 章...基于卷积神经网络的 Keras 深度学习库中的目标识别 流行的深度学习库 用深度学习预测电影评论的情感 Python 中的 Keras 深度学习库的回归教程 如何使用 Keras...@tabeworks 如何在 Python 中使用 XGBoost 评估梯度提升模型 在 Python 中使用 XGBoost 的特征重要性和特征选择 浅谈机器学习的梯度提升算法 应用机器学习的...XGBoost 模型 在 Python 中使用 XGBoost 调整梯度提升的学习率 如何在 Python 中使用 XGBoost 调整决策树的数量和大小 如何在 Python 中使用 XGBoost

    1.1K20
    领券