在wxMaxima中求解三角方程sin(x)=0.3,范围为[0,4π],可以按照以下步骤进行:
以上步骤中,我们首先定义了方程sin(x)=0.3和范围[0,4π],然后使用trigsimp函数简化方程,再使用solve函数求解方程。最后,遍历方程的解,并打印满足范围要求的实数解。
关于wxMaxima的更多信息和使用方法,您可以参考腾讯云上的Maxima产品介绍页面:Maxima产品介绍
使用Python中的Sympy库解决高等数学中极限、导数、偏导数、定积分、不定积分、双重积分等问题
定义符号变量 >>> a = symbols('a') >>> b, c, d = symbols('b c d') >>> syms = symbols("a0:5")#也可以以range的方式定义符号变量元组 >>> syms (a0, a1, a2, a3, a4) >>> g,h = var('g h')# 也可以用var >>> x = var('x', positive=True)#可以设定条件(正数) >>> abs(-x) >>> k, m, n = symbols('k m n', i
R是作为统计语言,生来就对数学有良好的支持,一个函数就能实现一种数学计算,所以用R语言做数学计算题特别方便。如果计算器中能嵌入R的计算函数,那么绝对是一种高科技产品。
文章目录 一、使用 matlab 求解 “ 线性常系数差分方程 “ 示例二 1、B 向量元素 : x(n) 参数 2、A 向量元素 : y(n) 参数 3、输入序列 4、matlab 代码 一、使用 matlab 求解 “ 线性常系数差分方程 “ 示例二 ---- 描述 某个 " 线性时不变系统 " 的 " 线性常系数差分方程 " 如下 : y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N a_i y(n - i) 其中 , M = 2 , N
方程 a x^{2}+b x+c=0 的解有以下几种情况 :(1) a=0 和 b=0, 无解(2) a=0 和 b !=0, 有一个实根 : x=-\frac{c}{b}(3) b^{2}-4 a c=0, 有两个相等实根 : x_{1}=x_{2}=-\frac{b}{2 a}(4) b^{2}-4 a c>0,: x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}(5) b^{2}-4 a c<0,: x_{1}=-\frac{b}{2 a}+\frac{\sqrt{4 a c-b^{2}}}{2 a} \mathrm{i}, x_{2}=-\frac{b}{2 a}-\frac{\sqrt{4 a c-b^{2}}}{2 a} \mathrm{i}_{}
https://www.cnblogs.com/zhoug2020/p/7864898.html
最近几期 Wolfram 公众号有不少内容是从各类实际的高中试题中摘选经典和复杂问题,结合软件加以解决和分析。内容来看是充实完整,分析透彻。本文抛砖引玉,从中学数学老师的日常应用出发,按课程标准的内容组织,运用 Mathematica 的计算和图形功能,形象的获取数学对象的直观展示,避免了繁重的笔头计算;并以实验的方式来研究数学,体现软件在基础教学课堂中的帮助。
该文介绍了如何通过自定义View和动画实现圆形进度条的绘制,主要利用了Canvas、Path、Paint等类进行实现。同时介绍了如何实现圆形进度条在Canvas上的动画展示,包括自定义动画、ObjectAnimator、属性动画等。同时,还介绍了如何实现圆形进度条和圆形图片的切换,主要利用了自定义属性动画和ObjectAnimator进行实现。该文还介绍了如何实现圆形进度条的长度调节和点击调节,主要利用了自定义调节器和动画监听器进行实现。最后,该文介绍了如何将圆形进度条应用到圆形图片的展示上,主要利用了自定义圆形图片控件和圆形进度条组件进行实现。
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
早在两千多年前,柏拉图就在他的著作 Timaeus 里提到了五种正多面体:正四面体、立方体、正八面体、正十二面体、正二十面体。因此,这五种正多面体也被称为柏拉图立体。两千多年以来,这些正多面体因为其对称性,吸引了无数数学家、艺术家。 而在这篇文章里,我将介绍如何用多边形环,根据正多面体的对称性,组成各种各样美丽的空间图形。在纽结理论(Knot Theory)里,这样由有限多个互不相交的纽结(多边形环也是一种纽结,平凡纽结)构成的空间图形,叫做链环(Link)。组成链环的每一个纽结称为该链环的一个分支。由于这
对于每个像素点 ,其含有 3 个未知数()。而 步相移条纹可以构建 个方程,理论上说,当 时方程就有唯一解。但是通常我们会选取 形成超定方程,从而使得方程解更稳定。
三角函数在python和numpy中实现的不够全面,主要包括cos, cosh, sin sinh, tan, tanh三角函数和arccos, arccosh, arcsin, arcsinh, arctan, arctanh反三角函数,cot,sec,csc,arccot,arcsec,arccsc均为提供,不过可以通过其他函数进行组合或变形得以实现。
求解数学问题,可视化二维和三维表达式的图形,并查看各种高中和大学水平问题的分步解。
手眼标定方程推导 手眼标定求解:Tsai方法 基于上面两篇手眼标定的博文,相信有很多朋友在实验过程中发现精度不是那么的如意,毕业工作第一年就开始接触手眼标定,刚开始也是标定效果不好不知道问题出在哪里,后来从最基础的理论知识入手进行一些实验,记得刚开始做实验用的是UR5机械臂,根据手眼标定结果进行物体抓取,抓取效果还是很准确的,后来公司开发自己的机械臂进行同样的实验(机械臂连杆是3D打打印件,精度必定是比较差的),标定效果却是非常不理想。使用Tsai方法求解标定方程文章中根据作者论文对误差影响做了一些分析,下面使用Tsai求解方法进行一些Matlab仿真分析。
css-doodle 是一个基于 Web-Component 的库。允许我们快速的创建基于 CSS Grid 布局的页面,以实现各种 CSS 效果(或许可以称之为 CSS 艺术)。后续几篇文章可能都会与之有关。
作者:Heinrich 链接:https://zhuanlan.zhihu.com/p/19763231 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
在MATLAB中,变量的调用优先级(calling priority)高于函数,因此变量名不应该覆盖内置函数.
poly 函数将这些根重新转换为多项式系数。对向量执行运算时,poly 和 roots 为反函数,因此 poly(roots(p)) 返回 p(取决于舍入误差、排序和缩放)。
网上有很多类似的介绍,但是本文会结合实例进行介绍,尽量以最简单的语言进行解析。 CORDIC ( Coordinate Rotation Digital Computer ) 是坐标旋转数字计算机算法的简称, 由 Vloder• 于 1959 年在设计美国航空导航控制系统的过程中首先提出[1], 主要用于解决导航系统中三角函数、 反三角函数和开方等运算的实时计算问题。 1971 年, Walther 将圆周系统、 线性系统和双曲系统统一到一个 CORDIC 迭代方程里 , 从而提出了一种统一的CORDIC 算法形式[2]。 CORDIC 算法应用广泛, 如离散傅里叶变换 、 离散余弦变换、 离散 Hartley 变换、Chirp-Z 变换、 各种滤波以及矩阵的奇异值分解中都可应用 CORDIC 算法。 从广义上讲,CORDIC 算法提供了一种数学计算的逼近方法。 由于它最终可分解为一系列的加减和移位操作, 故非常适合硬件实现。 例如, 在工程领域可采用 CORDIC 算法实现直接数字频率合成器。 本节在阐述 CORDIC 算法三种旋转模式的基础上, 介绍了利用 CORDIC 算法计算三角函数、 反三角函数和复数求模等相关理论。 以此为依据, 阐述了基于 FPGA 的 CORDIC 算法的设计与实现及其工程应用。
一般而言,通过已有的数据点去推导其它数据点,常见的方法有插值和拟合。插值适用性较广,尤其是线性插值或样条插值已被广泛的应用。但是通过已知的函数去拟合数据,是连接理论与实验重要的桥梁,这一点是插值无法替代的。
sijk代表sin(θi-θj+θk),cijk代表cos(θi-θj-+θk),用两角和差公式直接展开即可.
解决该类问题的思路也很简单,直接沿用我们在 一元函数 中的手段:通过 驻点 找 极值点
对三维波动方程与三维热传导方程使用分离变量法,得到时间上的方程,以及空间上的名为亥姆霍兹方程的方程。
事实上,非线性存在于物理与工程中的各个领域。在机械中,就存在着大量的非线性现象。通过双摆和三摆的例子,来感受到一个小的扰动,随着时间的推移,到最终会带来多大的变化。
实例1:三角函数曲线(1) function shili01 h0=figure('toolbar','none',... 'position',[198 56 350 300],... 'name','实例01'); h1=axes('parent',h0,... 'visible','off'); x=-pi:0.05:pi; y=sin(x); plot(x,y); xlabel('自变量X'); ylabel('函数值Y'); title('SIN( )函数曲线'); grid
4 、若要同时改变颜色及图线型态(Line style),也是在坐标对后面加上相关字串即可
看书看到浮点数部分。里面用到了math.ceil()。一看就知道是向上取整,在pycharm里运行却报错了
非常有名的笛卡尔曲线数学公式: ( x 2 + y 2 − 2 a x ) 2 = 4 a 2 ( x 2 + y 2 ) (x^{2}+y^{2}-2ax)^{2}=4a^{2}(x^{2}+y^{2}) (x2+y2−2ax)2=4a2(x2+y2) 即心形曲线,本例通过Applet绘制出笛卡尔曲线。
如果你使用 Python 语言进行科学计算,那么一定会接触到 Numpy。Numpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量的函数,方便你快速构建数学模型。
放假了,近来无事,就复习了一下mathematica相关知识点。已经玩了很多东西,不过大概还是很熟悉。 Mathematica(我简称mma),可以通过交互方式,实现函数作图,求极限,解方程等,也可以用它编写像c那样的结构化程序。Mma在系统定义了许多强大的函数,我们称之为内建函数,分二类,一是数学意义上的函数,如绝对值函数 Abs[x],正弦函数Sin[x]等;二是命令意义上的函数,如作图函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]
强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?
强大的画图功能是Matlab的特点之中的一个,Matlab提供了一系列的画图函数,用户不须要过多的考虑画图的细节,仅仅须要给出一些基本參数就能得到所需图形,这类函数称为高层画图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层画图操作。这类操作将图形的每一个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每一个对象分配一个句柄,能够通过句柄对该图形元素进行操作,而不影响其它部分。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第13章 DSP快速计算函数-三角函数和平方根 本期教程
关于MATLAB里柱状图的画法,以及如何在图例legend和轴标签xlabel里加入latex公式,请参考 https://blog.csdn.net/u014261408/article/details/102511989。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第13章 DSP快速计算函数-三角函数和平方根 本期教
在接下来的文章中主要介绍如何利用python 中的matplotlib进行数据的可视化展示。
看到文章的名字,可能很多人都没懂意思,如果叫它的另一个名字:代数运算,或许你就懂了;与正常的数值计算对数值处理有点不一样,符号运算处理的是符号;符号除了可以代表数以外,还可以代表多项式、函数、数学结构等等,MATLAB的符号数学工具箱(Symbolic Math Toolbox简称sym)具有丰富的内容,工具箱中符号表达式的计算都是在Maple内核下运行。Maple是一款数学软件,具体我也没了解过,反正符号运算功能很强就对了
说起数学计算器,我们常见的是加减乘除四则运算,有了它,我们就可以摆脱笔算和心算的痛苦。四位数以上的加减乘除在数学的原理上其实并不难,但是如果不借助于计算器,光依赖我们的运算能力(笔算和心算),不仅运算的准确度大打折扣,而且还会让我们对数学的运用停留在一个非常浅的层次。
在本文中,我们将深入探讨机器人学的两个核心概念:正运动学和逆运动学。这两个概念是理解和控制机械臂运动的基础。通过一个具体的7轴机械臂实例,我们将详细介绍如何计算机械臂的正运动学和逆运动学。我们首先会解释正运动学和逆运动学的基本概念和数学原理,然后我们将展示如何应用这些原理来计算7轴机械臂的运动。我们的目标是让读者对机械臂的运动控制有一个深入的理解,并了解如何在实践中应用这些知识。
现在是 2022-1-1,我简单的点评一下今年各位老师的出卷,如果读者想刷这一年的,可以作为参考
其实利用 Android Canvas 实现类似刮刮卡或者手写板功能比较方便,通过自定义 View 绘制 2 个图层,位于上层的图层在手指划过的位置将透明度置为 0 ,这样下层图层的颜色便可以显示出来。
首先很关键的是,看到arctan e^x的样子想到相加等于二分之pi的这个式子,理应记住。但差一个负号,分半换元得到。然后另一个二分之pi来自很经典的这个积分,考虑三角换元得到结果。三角换元来自sin,同时这个积分似乎没有什么更好的办法求解了。经典例题,比较tricky。
WolframAlpha (WA) 是一个计算知识引擎,这是一种非常奇特的方式,可也以说 WolframAlpha 是一个可以回答你问题的平台。 WolframAlpha 以其数学能力而闻名,它可以成为一个非常强大的工具来帮助你进行计算。
中学时学习了三角函数,下面这类图象天天看也没啥特别感觉,但是对于数学大咖而言就不一样了:
HTML 采用的是窗口坐标系,以参考对象(参考对象通常是最接近图形元素的 position 非 static 的元素)的元素盒子左上角为坐标原点,x 轴向右,y 轴向下,坐标值对应像素值。
1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg 7.jpg 函数 说明 实例 math.e 自然常数e >>> math.e2.718281828459045 math.pi 圆周率pi >>> math.pi3.141592653589793 math.degrees(x) 弧度转度 >>> math.degrees(math.pi)180.0 math.radians(x) 度转弧度 >>> math.radians(45)0.7853981633974483
领取专属 10元无门槛券
手把手带您无忧上云