首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

神经网络中的激活函数

在神经网络中,有一个重要的概念就是激活函数(activation function),正好在网上看到这样一篇介绍激活函数的文章,于是翻译出来,原文地址:https://towardsdatascience.com...它只是一个添加到神经网络输出端的节点,也被称为传递函数。它也可以连接两个神经网络。 为什么使用神经网络的激活函数?...方程式:f(x) = x 范围:(负无穷到正无穷大) 它不利于满足神经网络的数据的复杂性及数据的各种参数。 非线性激活函数 非线性激活函数是最常用的激活函数。...tanh函数主要用于二分类。 tanh和logistic sigmoid激活函数都用在前馈网络中。 3....ReLU(整流线性单位)激活函数 ReLU是目前世界上使用最多的激活函数,因为它几乎用于所有的卷积神经网络或深度学习中。

1.6K30

神经网络中的激活函数-tanh

为什么要引入激活函数 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当...最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。...否则你想想,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。所以你没有非线性结构的话,根本就算不上什么神经网络。...tanh的绘制 tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来。 公式 ?...相关资料 1、python绘制神经网络中的Sigmoid和Tanh激活函数图像(附代码) - CSDN博客; 2、神经网络中的激活函数具体是什么?

77230
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【学术】如何在神经网络中选择正确的激活函数

    在神经网络中,激活函数是必须选择的众多参数之一,以通过神经网络获得最优的成果和性能。 在这篇文章中,我将假设你已经理解了神经网络工作的基本原理,并将详细介绍涉及激活的过程。...在每一层上,由于问题是二进制的,步骤函数都是激活所需的全部。 最常用的激活函数是sigmoid函数(蓝色),与步骤函数(橙色)相比,它在图上是这样的: ?...正如你所看到的,TanH的方程与Sigmoid非常相似。 ? TanH函数的推导是: ? ReLU激活函数是深度学习中最常用且最成功的函数。...有一种常见的经验法则是,神经网络上的层越多,就会更容易成功,然而这产生了一个著名的问题:消失梯度下降(vanishing gradient descent),许多非线性激活技术,如Sigmoid和Tanh...这就是为什么ReLU被用于更复杂的神经网络,如深度卷积网络。ReLU没有层限制。然而,ReLU失去了压缩数值的优势,但是避免了超限或放大问题。换句话说,它不能处理非常大的值,因为它不能压缩它们。

    892100

    理解激活函数在神经网络模型构建中的作用

    神经网络是由多个神经元在宽度和深度上链接而成的,通俗点理解,激活函数就是神经网络中每个神经元的输出后乘起来的那个函数。...那么在神经网络中,激活函数(Activation function)一般选择什么样的函数呢: 除此之外,在深层神经网络中,比较常用的是ReLu(Rectified Linear Units)函数,...(注意下图中的网络与上图公式推导的网络只是输入不同而已) 所以,最后总结一下:激活函数在神经网络中的功能即通过对加权的输入进行非线性组合产生非线性决策边界(non-linear decision...深层神经网络中的激活函数 最后一个部分,在说明一下深层神经网络中的激活函数,它的作用与浅层网络是相同的—增加非线性,但是使用的是ReLu(Rectified Linear Units)函数,主要是为了解决...参考: 《Machine Learning》Tom M.Mitchell 《TensorFlow 实战Google深度学习框架》 《神经网络中激活函数的作用》 《 通俗理解神经网络之激励函数

    2.3K50

    人工智能|神经网络中的激活函数

    问题描述 激活函数是深度学习,也是人工神经网络中一个十分重要的学习内容,对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有非常重要的作用。那么,激活函数的作用应该如何来理解呢?...在tensorflow中,用tf.sigmoid(x)直接调用这个函数使用。 Sigmoid函数的数学公式和函数图像如下: ? ?...tensorflow中可以用tf.nn.softmax()来调用。 Softmax函数的数学公式如下: ?...在神经网络中,隐藏层之间的输出大多需要通过激活函数来映射,在构建模型时,需要根据实际数据情况选择激活函数。...TensorFlow中的激活函数不止这4种,本文只是介绍最常用的4个,当然,其他激活函数大多是这几个激活函数的扩展变换形式。

    2K20

    详解神经网络中的神经元和激活函数

    为了模拟神经元这种根据输入信号强弱做出反应的行为,在深度学习算法中,运用了多种函数来模拟这种特性,最常用的分布是步调函数和sigmoid函数,我们先看看步调函数的特性,我们通过以下代码来绘制步调函数:...sigmoid函数的代数式子如下: 其中的字母e表示欧拉常数,它的值约为2.71828。以后面对更复杂的问题时,我们还得使用更复杂的模拟函数,所有这些模拟神经元对电信号进行反应的函数统称为激活函数。...一个神经元会同时接收多个电信号,把这些电信号统一起来,用激活函数处理后再输出新的电信号,如下图: 神经网络算法中设计的神经元会同时接收多个输入参数,它把这些参数加总求和,然后代入用激活函数,产生的结果就是神经元输出的电信号...X = 0.2 + 0.4 = 0.6, 再将其传入激活函数得 y = 1 / (1 + exp(-0.6)) = 0.6457,最后我们得到神经网络的输出结果为: (0.7408, 0.6457)。...下一节我们将深入研究如何使用张量运算加快神经网络的运算,以及探讨如何通过误差调整网络中节点间的权值。

    93831

    《C 语言神经网络中激活函数计算的深度剖析》

    当我们运用 C 语言来构建神经网络时,如何妥善处理激活函数的计算,成为了决定神经网络性能优劣的重要环节。激活函数在神经网络中的作用举足轻重。...并且,在 C 语言代码中,使用条件判断语句来实现 ReLU 函数的计算时,要考虑代码的效率,避免过多的分支预测失败导致性能下降,可以采用一些优化技巧,如将判断条件与数据处理相结合,减少不必要的指令执行。...在 C 语言实现神经网络时,激活函数的计算不仅仅局限于单个神经元的前向传播过程。在整个神经网络的训练过程中,激活函数的导数计算在反向传播算法中起着关键作用。...综上所述,在 C 语言实现神经网络时,激活函数的计算是一个充满挑战与机遇的领域。需要我们深入理解各种激活函数的特性,在计算过程中兼顾数值稳定性、计算效率、代码可维护性等多方面的因素。...通过精心的设计和优化,才能构建出高效、准确且具有良好扩展性的神经网络,使其在图像识别、自然语言处理等众多领域发挥出强大的威力,推动人工智能技术不断向前发展。

    10100

    神经网络中的神经元和激活函数介绍

    文章目录 1、什么是人工神经网络 2、什么是神经元 3、什么是激活函数 线性激活函数 Sigmoid激活函数 双曲正切激活函数 修正线性单元(ReLU)激活函数 Leaky ReLU激活函数 Softmax...激活函数 1、什么是人工神经网络 神经网络能够利用多层神经元学习复杂的模式,这些神经元会对数据进行数学变换。...输入层和输出层之间的层被称为“隐藏层”。 神经网络具有一种独特的能力,可以学习并识别数据中的复杂特征关系,而这些关系可能对于其他传统的算法来说难以直接发现和建模。...它们是完全连接的,即一层中的每个节点都通过权重与下一层中的每个节点相连。 深度学习这一术语用于指代由许多隐藏层构建的机器学习模型:深度神经网络。...计算从线性方程开始: 在添加非线性激活函数之前: 3、什么是激活函数 激活函数是神经元应用的一个非线性函数,用于在网络中引入非线性特性。

    25410

    【DL碎片3】神经网络中的激活(Activation)函数及其对比

    从【DL笔记1】到【DL笔记N】以及【DL碎片】系列,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。...---- 神经网络的每一层基本都是在一个线性运算后面来一个非线性激活函数(Activation function),再把值传给下一层的。激活函数有多种,这篇文章主要就是介绍各种激活函数和它们的对比。...这样,n层的神经网络,就相当于一个简单的Logistic regression了。 因此,我们必须采用一个非线性的激活函数,让每一层都有意义,让每一层都有其特定的功能!...有时是真是忍不住说它是线性函数,毕竟每一段都是线性的,但是人家就是实实在在的非线性函数,它不会使多层神经网络退化成单层。...ReLU还有很多其他的变体,但是最最常使用的效果最稳定的还是ReLU。 因此,之后在设计神经网络的时候,选择激活函数我们就可以放心大胆地选择ReLU,它不仅速度快,而且效果好。

    76530

    【干货】Batch Normalization: 如何更快地训练深度神经网络

    【导读】本文是谷歌机器学习工程师 Chris Rawles 撰写的一篇技术博文,探讨了如何在 TensorFlow 和 tf.keras 上利用 Batch Normalization 加快深度神经网络的训练...并为构建TensorFlow模型提供高级API; 所以我会告诉你如何在Keras做到这一点。...tf.layers.batch_normalization函数具有类似的功能,但Keras被证明是在TensorFlow中编写模型函数的一种更简单的方法。...MNIST是一个易于分析的数据集,不需要很多层就可以实现较低的分类错误。 但是,我们仍然可以构建深度网络并观察批量标准化如何实现收敛。 我们使用tf.estimator API构建自定义估算器。...另一方面,其他激活函数(如指数ReLu或泄漏ReLu函数)可以帮助抵制梯度消失问题,因为它们对于正数和负数都具有非零导数。 最后,重要的是要注意批量标准化会给训练带来额外的时间成本。

    9.6K91

    Keras还是TensorFlow?深度学习框架选型实操分享

    文本中,Rosebrock 展示了如何训练使用 Keras 的神经网络和使用直接构建在 TensorFlow 库中的 Keras+TensorFlow 集成(具有自定义功能)的模型。...在模型定义中,我使用 Lambda 层,如代码中的黄色突出显示,它可以用于插入自定义激活函数 CRELU (Concatenated ReLUs), 激活函数 CRELU 是由 Shang 等人在论文“...CRELU 激活函数在 Keras 中没有相应的实现,但是在 TensorFlow 中可以。...当然,原始精度并不是本节所重点关注的内容。 相反,更需要我们注意的是,如何在 Keras 模型内部,用 TensorFlow 的激活函数替换标准 Keras 激活函数!...此外,你也可以使用自定义的激活函数、损失/成本函数或图层来执行以上相同的操作。

    1.7K30

    一文读懂神经网络中的激活函数(二)

    看看深度学习之激活函数 本篇接着上一篇推文入门《必看!从零开始了解到训练神经网络(一)》,在介绍完神经网络的基本原理和结构之后,继续介绍神经网络中的关键之一 —— 激活函数。...树根这一部分会给大家通俗讲一下激活函数的概念,原理以及作用,还有实际应用中各种激活函数的优缺点。...(7)输出范围有限:有限的输出范围使得网络对于一些比较大的输入也会有稳定的输出,这也是为什么早期的激活函数都以此类函数为主,如Sigmoid、TanH。...,仅仅是列举几个最常用的激活函数,但是在日常的实践中已经够用了。...2.Tanh 数学表达: 在分类任务中,双曲正切函数(Tanh)逐渐取代 Sigmoid 函数作为标准的激活函数,其具有很多神经网络所钟爱的特征。它是完全可微分的,反对称,对称中心在原点。

    2.8K110

    如何在Python中从0到1构建自己的神经网络

    神经网络由以下组件组成: · 输入层, x · 任意数量的隐藏层 · 输出层, ŷ · 每一层之间的权重和偏差,W和b · 对于每一个隐藏的层选择激活函数,σ。...在本教程中,我们将使用Sigmoid激活函数。 下图显示了一个2层神经网络(注意,当计算神经网络中的层数时,输入层通常被排除在外。) image.png 用Python创建一个神经网络类很容易。...请注意,为了简单起见,我们只显示了假设为1层神经网络的偏导数。 让我们将反向传播函数添加到python代码中。...例如: · 除了Sigmoid函数以外,我们还能使用其他激活函数吗? · 使用学习率神经网络训练 · 使用卷积用于图像分类任务 从零开始写自己的神经网络可以学到很多的东西。...虽然像TensorFlow和Keras这样的深度学习库使得在不完全了解神经网络内部工作原理的情况下很容易构建深网,但我发现对神经网络有更深入的理解对于未来成为优秀的数据科学家是非常重要的。

    1.8K00

    神经网络中的激活函数-tanh为什么要引入激活函数tanh的绘制公式特点图像python绘制tanh函数相关资料

    为什么要引入激活函数 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当...最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。...否则你想想,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。所以你没有非线性结构的话,根本就算不上什么神经网络。...tanh的绘制 tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来。 公式 ?...相关资料 python绘制神经网络中的Sigmoid和Tanh激活函数图像(附代码) - CSDN博客 神经网络中的激活函数具体是什么?

    2.2K20

    tensorflow_cookbook--preface

    一路上,我们涵盖了计算图,损失函数,反向传播和数据训练。 第3章,线性回归,重点是使用TensorFlow来探索各种线性回归技术,如戴明,套索,脊,弹性网和逻辑回归。...第6章,神经网络涵盖了如何在TensorFlow中实现神经网络,从操作门和激活功能概念开始。然后我们显示一个浅层神经网络,并展示如何建立各种不同类型的图层。...第8章,通过说明如何在具有卷积神经网络(CNN)的图像上使用神经网络来扩展我们对神经网络的知识。我们展示如何构建一个简单的CNN用于MNIST数字识别,并将其扩展到CIFAR-10任务中的彩色图像。...第9章,循环神经网络解释了如何在TensorFlow中实现复发神经网络(RNN)。我们展示如何做文本垃圾邮件预测,并扩展RNN模型,以基于莎士比亚的文本生成。...第10章,采用TensorFlow进行生产,提供了将TensorFlow移植到生产环境以及如何利用多台处理设备(如GPU)和设置分布在多台机器上的TensorFlow的提示和示例。

    2.4K100

    【最新TensorFlow1.4.0教程02】利用Eager Execution 自定义操作和梯度 (可在 GPU 运行)

    Eager Execution自定义操作及其梯度函数 在老版本的TensorFlow中,编写自定义操作及其梯度非常麻烦,而且像编写能在GPU上运行的操作和梯度需要用C++编写。...TensorFlow 1.4中Eager Execution特性的引入,使得自定义操作和梯度变得非常简单。...下面的例子是我用TensorFlow 1.4的Eager Execution特性编写的Softmax激活函数及其梯度,这个自定义的操作可以像老版本中的tf.nn.softmax操作一样使用,并且在梯度下降时可以使用自定义的梯度函数...return loss, grad 下面,我们使用自定义的softmax层来实现一个用多层神经网络分类手写数字数据集的示例。...神经网络结构 ? 本教程使用具有1个隐藏层的MLP作为网络的结构,使用RELU作为隐藏层的激活函数,使用SOFTMAX作为输出层的激活函数。

    1.7K60

    深度学习(二)框架与工具:开启智能未来之门(210)

    TensorFlow 具有灵活的计算图结构,用户可以在不执行计算的情况下构建复杂的模型,然后选择合适的时机进行实际计算。同时,它具备自动微分功能,为训练神经网络提供了极大的便利。...灵活的构建模型方式允许开发者使用 Python 类或函数来定义和训练深度学习模型,自定义网络层、损失函数和优化器等。 PyTorch 在深度学习领域可用于构建、训练和评估各种类型的神经网络模型。...自定义数据工作流:具有可配置图形和自定义 operator 的自定义数据工作流。...、输入输出形状、激活函数等信息。...博主还写跟本文相关的文章,邀请大家批评指正: 1、深度学习(一)基础:神经网络、训练过程与激活函数(1/10) 2、深度学习(二)框架与工具:开启智能未来之门(2/10)

    12210

    深度学习(一)基础:神经网络、训练过程与激活函数(110)

    强大的表示能力:深度神经网络具有强大的表示能力,能够捕捉到数据中的复杂和抽象的模式。...在训练过程中,前向传播的结果会被用来计算损失,然后通过反向传播算法来调整权重和偏置,以减少预测误差 三、激活函数 激活函数在神经网络中扮演着至关重要的角色。...神经网络中的激活函数有哪些?它们的作用是什么? 神经网络中的激活函数是一类在网络的神经元中使用的函数,它们的主要作用是引入非线性,使得神经网络能够学习和执行复杂的任务。...,以及在早期的神经网络中作为隐藏层的激活函数。...学习基础:了解深度学习的基本概念,如神经网络、激活函数、损失函数等。 实践教程:通过官方文档、在线课程或教程学习如何使用框架构建和训练模型。

    42610
    领券