seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...,剩余的空间则展示每两个列元素之间的关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...# 1. corner 上下三角矩阵区域的元素实际上是重复的,通过corner参数,可以控制只显示图形的一半,避免重复,用法如下 >>> sns.pairplot(df, corner=True) >>...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。
40,100) for i in range(60)]).reshape(20,3),columns=["语文","数学","英语"]) df['总成绩'] = df.sum(axis=1) df 添加一列条件列...,具体不在这讲了,今天讲一下用python怎么实现该功能,总共五种(三大类:映射+numpy+pandas分箱)方法,提前预告下,最后一种数据分箱是与excel 中的 lookup最像的 方法一:映射...这个函数依次接受三个参数:条件;如果条件为真,分配给新列的值;如果条件为假,分配给新列的值 # np.where(condition, value if condition is true, value...,给它提供两个参数:一个条件,另一个对应的等级列表。...# 在conditions列表中的第一个条件得到满足,values列表中的第一个值将作为新特征中该样本的值,以此类推 df6 = df.copy() conditions = [ (df6['
最近在继续开发“兰州疫情可视化软件”,没错年前托大了,以至于现在都么有完全上线,昨天我还沉浸在能够写出GET请求的API,并且通过了postman的测试,但是数据库存的数据格式转换成json文件有些格式转换问题...,这里拿出一个其中的一个小问题,加以解决。...下面的这个方法是Pandas库的思路,代码如下: import pandas as pd list1 = [‘ctf’,’awd’,’xss’,’csrf’,’bypass’,’payload’] df
一、数据容器简介 Python 中的 数据容器 数据类型 可以 存放多个数据 , 每个数据都称为 元素 , 容器 的 元素 类型可以是任意类型 ; Python 数据容器 根据 如下不同的特点 : 是否允许元素重复...[] 作为 列表 的标识 ; 列表元素 : 列表的元素之间 , 使用逗号隔开 ; 定义 列表 字面量 : 将元素直接写在中括号中 , 多个元素之间使用逗号隔开 ; # 定义列表字面量 [元素1, 元素...2, 元素3] 定义 列表 变量 : 使用变量 接收 列表字面量值 ; # 定义列表变量 变量 = [元素1, 元素2, 元素3] 定义空列表 : 使用 [] 或者 list() 表示空列表 ; # 空列表定义...变量 = [] 变量 = list() 上述定义 列表 的语句中 , 列表中的元素类型是可以不同的 , 在同一个列表中 , 可以同时存在 字符串 和 数字类型 ; 2、代码示例 - 列表中存储类型相同的元素...print(names) # 打印列表类型 print(type(names)) 执行结果 : ['Tom', 'Jerry', 'Jack'] 3、代码示例 - 列表中存储类型不同的元素
大家好,我是Python进阶者。...一、前言 前几天在Python最强王者群有个叫【麦当】的粉丝问了一个关于Python如何把一个python列表(有很多个元素)变成一个excel表格的第一列的问题,这里拿出来给大家分享下,一起学习。...=col_names,fill_value=0) print(df3) # 在最前面插入一列,方法二 df3.insert(0,'新列2',new3) print(df3) 【瑜亮】老师在手机上编程的...三、总结 大家好,我是Python进阶者。...这篇文章基于粉丝提问,针对如何把一个python列表(有很多个元素)变成一个excel表格的第一列的问题,给出了具体说明和演示,文中给了两个方法,顺利地帮助粉丝解决了问题。
大家好,又到了Python办公自动化专题 如果你经常与Excel或Word打交道,那么从两份表格/文档中找到不一样的元素是一件让人很头疼的工作,当然网上有很多方法、第三方软件教你如何对比两份文件。...本文就将以两份真实的Excel/Word文件为例,讲解如何使用Python光速对比并提取文件中的不同之处! 比较Excel 为了方便说明,我创建了一个简单的Excel用于示例 ?...接着再使用NumPy根据True/False定位元素位置,同时将值的改变写入原表格并保存 rows,cols=np.where(comparison_values==False) for item in...首先我们还是创建两份有区别的Word文档,内容取自百度百科中的Python介绍[1] ? 左边的为原始word右边的word是我修改了几处的文档, 现在我们用Python来快速找到两份文档的不同。...可以看到我们的word文件已经按照不同段落分好句存在两层list中,所以接下来的问题就转换为比较两个list,而这又是我们熟悉的?
printf("%d\t", result[i][j]); } printf("\n"); } return 1; } 最近发东西比较频繁,因为我的图床写好了
答案: 4.如何从1维数组中提取满足给定条件的元素? 难度:1 问题:从arr数组中提取所有奇数元素。 输入: 输出: 答案: 5.在numpy数组中,如何用另一个值替换满足条件的元素?...难度:1 问题:使用科学记数法(如1e10)漂亮的打印数组rand_arr 输入: 输出: 答案: 23.如何限制numpy数组输出中打印元素的数量?...难度:1 问题:将python numpy数组a中打印的元素数量限制为最多6个。 输入: 输出: 答案: 24.如何在不截断的情况下打印完整的numpy数组?...难度:2 问题:在iris_2d的sepallength(第1列)中查找缺失值的数量和位置。 答案: 34.如何根据两个或多个条件过滤一个numpy数组?...答案: 44.如何按列排序二维数组? 难度:2 问题:根据sepallength列对iris数据集进行排序。 答案: 45.如何在numpy数组中找到最频繁出现的值?
或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...如下实现对数据表中逐元素求平方 ? 广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。...对象,功能与python中的普通map函数类似,即对给定序列中的每个值执行相同的映射操作,不同的是series中的map接口的映射方式既可以是一个函数,也可以是一个字典 ?
选择特定行和列 df.loc[index, 'ColumnName'] 使用方式: 通过索引标签和列名选择DataFrame中的特定元素。 示例: 选择索引为1的行的“Name”列的值。...使用map函数进行值替换 df['Status'] = df['Status'].map({'Active': 1, 'Inactive': 0}) 使用方式: 使用map函数根据字典或函数替换列中的值...使用at和iat快速访问元素 df.at[index, 'ColumnName'] df.iat[index, columnIndex] 使用方式: 使用at和iat快速访问DataFrame中的元素。...使用mask进行条件替换 df['NewColumn'] = df['Column'].mask(df['Condition']) 使用方式: 使用mask根据条件替换值。...示例: 根据“Salary”列的条件进行替换。 df['Bonus'] = df['Salary'].mask(df['Salary'] > 60000, 'HighBonus') 46.
数据聚合: 支持聚合函数(如SUM、AVG、COUNT)对数据进行统计和汇总。 数据联接: 可以通过JOIN操作关联多个表的数据。 子查询: 允许在查询中嵌套子查询,实现更复杂的逻辑。...排序: 使用ORDER BY子句根据一列或多列对结果进行排序,可指定升序(ASC)或降序(DESC)。 聚合函数: 用于对数据进行统计,如SUM、AVG、COUNT等。...通过灵活组合以上元素,SELECT语句实现了对数据库中数据的灵活、高效的检索和处理,是SQL中最基础、重要的命令之一。理解和熟练掌握SELECT语句的使用对数据库查询操作至关重要。...,通过理解这些基本元素,可以构建出丰富、灵活的查询语句,满足不同的数据库查询需求。...这样的查询将返回指定表中所有行的指定列的数据。 使用别名进行列重命名 使用别名进行列重命名可以通过AS关键字。
选择特定行和列 df.loc[index, 'ColumnName'] 使用方式: 通过索引标签和列名选择DataFrame中的特定元素。 示例: 选择索引为1的行的“Name”列的值。...使用map函数进行值替换 df['Status'] = df['Status'].map({'Active': 1, 'Inactive': 0}) 使用方式: 使用map函数根据字典或函数替换列中的值...使用at和iat快速访问元素 df.at[index, 'ColumnName'] df.iat[index, columnIndex] 使用方式: 使用at和iat快速访问DataFrame中的元素...使用mask进行条件替换 df['NewColumn'] = df['Column'].mask(df['Condition']) 使用方式: 使用mask根据条件替换值。...示例: 根据“Salary”列的条件进行替换。 df['Bonus'] = df['Salary'].mask(df['Salary'] > 60000, 'HighBonus') 46.
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作。...Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明...,储存对两个数据框中重复非联结键列进行重命名的后缀,默认为('_x','_y') indicator:是否生成一列新值_merge,来为合并后的每行标记其中的数据来源,有left_only,right_only...7.数据框的条件筛选 在日常数据分析的工作中,经常会遇到要抽取具有某些限定条件的样本来进行分析,在SQL中我们可以使用Select语句来选择,而在pandas中,也有几种相类似的方法: 方法1: A =...8.数据框元素的去重 df.drop_duplicates()方法: 参数介绍: subset:为选中的列进行去重,默认为所有列 keep:选择对重复元素的处理方式,'first'表示保留第一个,'last
因为在之前的文章中已经详细的介绍了这两种方法,因此我们将简单介绍。更详细的可以查看【公众号:早起python】之前的文章。...五、查询数据集 现在我们已经了解了如何根据索引访问大型数据集的子集。现在,我们继续基于数据集列中的值选择行以查询数据。例如,我们可以创建一个DataFrame仅包含2010年之后打过的比赛。...接下来要说的是如何在数据分析过程的不同阶段中操作数据集的列。...] = df.pts - df.opp_pts >>> df.shape (126314, 24) 我们还可以重命名数据集的列。...如可视化尼克斯整个赛季得分了多少分: ? 还可以创建其他类型的图,如条形图: ? 而关于使用matplotlib进行数据可视化的相关操作中,还有许多细节性的配置项,比如颜色、线条、图例等。
除了这些核心库,Python数据分析模块还包括许多其他有用的工具和库,如Seaborn、SciPy、StatsModels等。...Numpy 在导入的时候可以重命名 一般都是重命名成np 1.1Numpy生成数组 Numpy最重要的一个特点是其N维数组对象ndarray。...DataFrame由多个Series组成,DataFrame可以类比为二维数组或者矩阵,但与之不同的是,DataFrame必须同时具有行索引和列索引。...() 删除数据集合中的空值 value_counts 查看某列各值出现次数 count() 对符合条件的统计次数 sort_values() 对数据进行排序,默认升序 sort_index() 对索引进行排序...,默认升序 group_by 对符合条件的数据进行分组统计 三、其他模块 3.1Matplotlib/Seaborn模块 在数据分析流程中,结果呈现是非常重要的步骤。
鸭哥这次教大家Python数据分析的两个基础包Numpy和Pandas。 首先导入这两个包。...2的元素a[0,2] a[0,2] #获取第一行,0前面要加逗号,不然打印类型出来 a[:,0] #获取第一列,0后面加逗号 a[0,:] #按轴计算:axis=1 计算每一行的平均值 a.mean...saleDf.mean() #查询第一行第二列的元素 salesDf.iloc[0.1] #获取第一行,代表所有列 salesDf.iloc[0,:] #获取第一列,代表所有行 salesDf.iloc...种: 1)Python内置的None值 2)在pandas中,将缺失值表示为NA,表示不可用not available。...销售时间,社保卡号)中为空的行 #how='any' 在给定的任何一列中有缺失值就删除 salesDf=salesDf.dropna(subset=['销售时间','社保卡号'],how='any')
序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字即它的位置或索引。序列都可以进行的操作有索引、截取(切片)、加、乘、成员检查。...除此之外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法如list中的Max()方法等。Python内置序列类型最常见的是列表、元组、字典和集合。...移除列表中的一个元素(默认最后一一个元素),并且返回该元素的值 list. remove( obj) 移除列表中某个值的第一个匹配项 list, reverse( ) 反转列表中元素顺序 list....,即列表的嵌套,也可以理解为多维列表的每一个元素也是一个列表,如:二维列表的元素是一维列表,三维列表的元素是二维列表。...[2]) print(a[1,2]) #同时获取不同行不同列,获取2行3列,和3行1列 print(a[1,2],a[2][0]) print(np.array(a[1,2],a[2][0])) #使用坐标
Numpy在导入的时候可以重命名 一般都是重命名成np Numpy的使用 Numpy生成数组 ndarray 一个ndarray是Python中NumPy库中的一个数据结构,用于存储和操作具有相同数据类型的多维数组...NumPy的random模块还提供了很多其他函数,如生成随机排列、采样、生成随机矩阵等。你可以根据需要查阅NumPy的官方文档以了解更多函数和用法。...它由一组有序的列组成,每个列可以是不同的数据类型(数值、字符串、布尔值等)。可以通过行和列的标签进行选择和过滤。...例如,series[2:5]将返回Series中索引为2到4的元素。 运算符操作:可以对Series进行各种数学运算,如加法、减法、乘法和除法。这些运算将分别应用于Series中的每个元素。...否则返回False dropna() 删除数据集合中的空值 value_counts 查看某列各值出现次数 count() 对符合条件的统计次数 sort_values() 对数据进行排序,默认升序 sort_index
排序 指导您如何对查询返回的结果集进行排序。 去重查询 为您提供一个删除结果集中重复行的子句。 第 2 节. 过滤数据 主题 描述 WHERE 根据指定条件过滤行。...交叉连接 生成两个或多个表中的行的笛卡尔积。 自然连接 根据连接表中的公共列名称,使用隐式连接条件连接两个或多个表。 第 4 节....主题 描述 插入 指导您如何将单行插入表中。 插入多行 向您展示如何在表中插入多行。 更新 更新表中的现有数据。 连接更新 根据另一个表中的值更新表中的值。 删除 删除表中的数据。...重命名表 将表的名称更改为新名称。 添加列 向您展示如何向现有表添加一列或多列。 删除列 演示如何删除表的列。 更改列数据类型 向您展示如何更改列的数据。 重命名列 说明如何重命名表中的一列或多列。...外键 展示如何在创建新表时定义外键约束或为现有表添加外键约束。 检查约束 添加逻辑以基于布尔表达式检查值。 唯一约束 确保一列或一组列中的值在整个表中是唯一的。
return count; } } 第一个for循环控制行,第二个while循环来二分查找, 让Low=high 结束找到第一个负数开始出现的下标
领取专属 10元无门槛券
手把手带您无忧上云