首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在prolog中定义谓词

在 Prolog 中定义谓词,可以使用以下语法:

代码语言:txt
复制
谓词(参数1, 参数2, ..., 参数n) :- 主体.

其中,谓词是一个原子(Atom),表示谓词的名称;参数是变量或常量,表示谓词的输入参数;主体是一个或多个用逗号分隔的语句,表示谓词的实现逻辑。

例如,定义一个谓词 add/3,用于计算两个数的和:

代码语言:txt
复制
add(X, Y, Z) :- Z is X + Y.

在这个谓词中,add 是谓词的名称,XYZ 是输入参数,Z is X + Y 是主体,表示 Z 的值是 XY 的和。

可以使用以下命令在 Prolog 中定义谓词:

代码语言:txt
复制
assert(谓词(参数1, 参数2, ..., 参数n) :- 主体).

例如,定义一个谓词 add/3,用于计算两个数的和:

代码语言:txt
复制
assert(add(X, Y, Z) :- Z is X + Y).

在这个命令中,assert 是一个内置谓词,用于向 Prolog 系统中添加新的谓词定义。

希望这个答案能够帮助您了解如何在 Prolog 中定义谓词。如果您有其他问题,欢迎继续提问。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • [深度] 高级认知的‘抽象’到底是什么?

    In recent years, scientists have increasingly taken to investigate the predictive nature of cognition. We argue that prediction relies on abstraction, and thus theories of predictive cognition need an explicit theory of abstract representation. We propose such a theory of the abstract representational capacities that allow humans to transcend the “here-and-now.” Consistent with the predictive cognition literature, we suggest that the representational substrates of the mind are built as a hierarchy, ranging from the concrete to the abstract; however, we argue that there are qualitative differences between elements along this hierarchy, generating meaningful, often unacknowledged, diversity. Echoing views from philosophy, we suggest that the representational hierarchy can be parsed into: modality-specific representations, instantiated on perceptual similarity; multimodal representations, instantiated primarily on the discovery of spatiotemporal contiguity; and categorical representations, instantiated primarily on social interaction. These elements serve as the building blocks of complex structures discussed in cognitive psychology (e.g., episodes, scripts) and are the inputs for mental representations that behave like functions, typically discussed in linguistics (i.e., predicators). We support our argument for representational diversity by explaining how the elements in our ontology are all required to account for humans’ predictive cognition (e.g., in subserving logic-based prediction; in optimizing the trade-off between accurate and detailed predictions) and by examining how the neuroscientific evidence coheres with our account. In doing so, we provide a testable model of the neural bases of conceptual cognition and highlight several important implications to research on self-projection, reinforcement learning, and predictiveprocessing(PP) models of psychopathology

    02
    领券