首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pandas数据帧中的日期时间范围之间进行过滤

在pandas数据帧中,可以使用日期时间范围进行过滤的方法是使用pd.DataFramequery方法或者使用布尔索引。

  1. 使用query方法进行过滤:
代码语言:txt
复制
import pandas as pd

# 创建一个示例数据帧
df = pd.DataFrame({
    'date': pd.date_range(start='2022-01-01', end='2022-01-10'),
    'value': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
})

# 使用query方法进行过滤
start_date = '2022-01-03'
end_date = '2022-01-07'
filtered_df = df.query('date >= @start_date and date <= @end_date')

print(filtered_df)

输出结果为:

代码语言:txt
复制
        date  value
2 2022-01-03      3
3 2022-01-04      4
4 2022-01-05      5
5 2022-01-06      6
6 2022-01-07      7
  1. 使用布尔索引进行过滤:
代码语言:txt
复制
import pandas as pd

# 创建一个示例数据帧
df = pd.DataFrame({
    'date': pd.date_range(start='2022-01-01', end='2022-01-10'),
    'value': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
})

# 使用布尔索引进行过滤
start_date = '2022-01-03'
end_date = '2022-01-07'
filtered_df = df[(df['date'] >= start_date) & (df['date'] <= end_date)]

print(filtered_df)

输出结果为:

代码语言:txt
复制
        date  value
2 2022-01-03      3
3 2022-01-04      4
4 2022-01-05      5
5 2022-01-06      6
6 2022-01-07      7

以上两种方法都可以实现在pandas数据帧中的日期时间范围之间进行过滤。在实际应用中,可以根据具体需求选择使用哪种方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

何在 Pandas 创建一个空数据并向其附加行和列?

Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据数据以表格形式在行和列对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据。大多数情况下,数据是从其他数据源(csv,excel,SQL等)导入到pandas数据。...在本教程,我们将学习如何创建一个空数据,以及如何在 Pandas 向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例,我们创建了一个空数据。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据进行操作的人来说非常有帮助。

27230
  • 《利用Python进行数据分析·第2版》第11章 时间序列11.1 日期时间数据类型及工具11.2 时间序列基础11.3 日期范围、频率以及移动11.4 时区处理时区本地化和转换11.5 时期及其

    虽然本章主要讲的是pandas数据类型和高级时间序列处理,但你肯定会在Python其他地方遇到有关datetime数据类型。 表11-1 datetime模块数据类型 ?...幸运是,pandas有一整套标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围工具。...表11-4列出了pandas频率代码和日期偏移量类。 笔记:用户可以根据实际需求自定义一些频率类以便提供pandas所没有的日期逻辑,但具体细节超出了本书范围。...shift通常用于计算一个时间序列或多个时间序列(DataFrame列)百分比变化。...各时间段都是半开放。一个数据点只能属于一个时间段,所有时间并集必须能组成整个时间。在用resample对数据进行降采样时,需要考虑两样东西: 各区间哪边是闭合

    6.5K60

    精通 Pandas 探索性分析:1~4 全

    我们还将学习 Pandas filter方法以及如何在实际数据集中使用它,以及基于将根据数据创建布尔序列保护数据方法。 我们还将学习如何将条件直接传递给数据进行数据过滤。...我们逐步介绍了如何过滤 Pandas 数据行,如何对此类数据应用多个过滤器以及如何在 Pandas 中使用axis参数。...重命名和删除 Pandas 数据列 处理和转换日期时间数据 处理SettingWithCopyWarning 将函数应用于 Pandas 序列或数据 将多个数据合并并连接成一个 使用 inplace...现在,我们将继续仔细研究如何处理日期时间数据。 处理日期时间序列数据 在本节,我们将仔细研究如何处理 Pandas 日期时间序列数据。...我们看到了如何处理 Pandas 缺失值。 我们探索了 Pandas 数据索引,以及重命名和删除 Pandas 数据列。 我们学习了如何处理和转换日期时间数据

    28.2K10

    Pandas时序数据处理入门

    作为一个几乎每天处理时间序列数据的人,我发现pandas Python包对于时间序列操作和分析非常有用。 使用pandas操作时间序列数据基本介绍开始前需要您已经开始进行时间序列分析。...因为我们具体目标是向你展示下面这些: 1、创建一个日期范围 2、处理时间数据 3、将字符串数据转换为时间戳 4、数据索引和切片时间序列数据 5、重新采样不同时间时间序列汇总/汇总统计数据 6...首先导入我们将使用库,然后使用它们创建日期范围 import pandas as pd from datetime import datetime import numpy as npdate_rng...df[df.index.day == 2] } 顶部是这样: 我们还可以通过数据索引直接调用要查看日期: df['2018-01-03'] } 在特定日期之间选择数据如何df['2018-01-...以下是在处理时间序列数据时要记住一些技巧和要避免常见陷阱: 1、检查您数据是否有可能由特定地区时间变化(夏令时)引起差异。

    4.1K20

    整理了10个经典Pandas数据查询案例

    而括号符号[]可以灵活地基于条件过滤数据,但是如果条件很多的话编写代码是繁琐且容易出错。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE数据子集或记录。所以要过滤PandasDataFrame,需要做就是在查询函数中指定条件即可。...但是,query()还不仅限于这些数据类型,对于日期时间值query()函数也可以非常灵活过滤。...日期时间过滤 使用query()函数在日期时间值上进行查询唯一要求是,包含这些值列应为数据类型dateTime64 [ns] 在示例数据,OrderDate列是日期时间,但是我们df其解析为字符串...但是一定要小心使用inplace=true,因为它会覆盖原始数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandasquery()函数,因为它可以方便以过滤数据集。

    22620

    整理了10个经典Pandas数据查询案例

    而括号符号[]可以灵活地基于条件过滤数据,但是如果条件很多的话编写代码是繁琐且容易出错。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE数据子集或记录。所以要过滤PandasDataFrame,需要做就是在查询函数中指定条件即可。...但是,query()还不仅限于这些数据类型,对于日期时间值query()函数也可以非常灵活过滤。...日期时间过滤 使用query()函数在日期时间值上进行查询唯一要求是,包含这些值列应为数据类型dateTime64 [ns] 在示例数据,OrderDate列是日期时间,但是我们df其解析为字符串...但是一定要小心使用inplace=true,因为它会覆盖原始数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandasquery()函数,因为它可以方便以过滤数据集。

    3.9K20

    10快速入门Query函数使用Pandas查询示例

    而括号符号[]可以灵活地基于条件过滤数据,但是如果条件很多的话编写代码是繁琐且容易出错。...所以要过滤pandas DataFrame,需要做就是在查询函数中指定条件即可。 使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。...那么如何在另一个字符串写一个字符串?...但是,query()还不仅限于这些数据类型,对于日期时间值 Query()函数也可以非常灵活过滤。...日期时间过滤 使用Query()函数在日期时间值上进行查询唯一要求是,包含这些值列应为数据类型dateTime64 [ns] 在示例数据,OrderDate列是日期时间,但是我们df其解析为字符串

    4.5K10

    10个快速入门Query函数使用Pandas查询示例

    而括号符号[]可以灵活地基于条件过滤数据,但是如果条件很多的话编写代码是繁琐且容易出错。...在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE数据子集或记录。所以要过滤pandas DataFrame,需要做就是在查询函数中指定条件即可。...那么如何在另一个字符串写一个字符串?将文本值包装在单个引号“”,就可以了。...但是,query()还不仅限于这些数据类型,对于日期时间值 Query()函数也可以非常灵活过滤。...日期时间过滤 使用Query()函数在日期时间值上进行查询唯一要求是,包含这些值列应为数据类型dateTime64 [ns] 在示例数据,OrderDate列是日期时间,但是我们df其解析为字符串

    4.4K20

    从 CPU 切换到 GPU 进行纽约出租车票价预测

    我认为语法基础知识类似于他们旨在加速 CPU 库,但远非抄袭。所以我对其进行了测试,仅使用基于 CPU Python 库导入、清理、过滤、特征化,并使用纽约出租车行程数据训练模型。...差异 就我而言,对于 RAPIDS Release v0.18,我发现了两个 cuDF 和 Pandas 不同边缘情况,一个涉及处理日期列(为什么世界不能就通用日期/时间格式达成一致?)...我将讨论我如何在脚本处理这些,但请注意,我们只需要稍微更改 100 多行代码 3 行。 第一个问题根本原因是 cuDF parse_dates不能像Pandas一样处理异常或非标准格式。...您所见,CPU 和 GPU 运行时之间比例实际上并不相同。 接下来让我们检查运行时间较长任务运行时间(以秒为单位)。...我们谈论是,你猜对了,我们知道用户定义函数传统上对 Pandas 数据性能很差。请注意 CPU 和 GPU 之间性能差异。运行时间减少了 99.9%!

    2.2K20

    Pandas 秘籍:6~11

    最终结果是一个数据,其列与原始列相同,但过滤掉了不符合阈值状态行。 由于过滤数据标题可能与原始标题相同,因此您需要进行一些检查以确保操作成功完成。...日期工具之间区别 智能分割时间序列 使用仅适用于日期时间索引方法 计算每周犯罪数量 分别汇总每周犯罪和交通事故 按工作日和年份衡量犯罪 使用日期时间索引和匿名函数进行分组 按时间戳和另一列分组...最典型地,时间在每个数据之间平均间隔。 Pandas 在处理日期,在不同时间段内进行汇总,对不同时间进行采样等方面具有出色功能。...使用.loc索引器无法仅根据Timestamp时间成分进行选择或切片。 要按时间范围选择所有日期,必须使用between_time方法,或者要选择确切时间,请使用at_time。...在步骤 2 ,我们创建了一个中间对象,可帮助我们了解如何在数据内形成组。resample第一个参数是rule,用于确定如何对索引时间进行分组。

    34K10

    媲美Pandas?一文入门PythonDatatable操作

    通过本文介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大时候你可以发现它可能比 Pandas 更加强大。...() pandas_df = datatable_df.to_pandas() ‍下面,将 datatable 读取数据转换为 Pandas dataframe 形式,并比较所需时间,如下所示:...基础属性 下面来介绍 datatable frame 一些基础属性,这与 Pandas dataframe 一些功能类似。...▌排序 datatable 排序 在 datatable 通过特定列来对进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____...在上面的例子,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 过滤语法与GroupBy语法非常相似。

    7.6K50

    媲美Pandas?PythonDatatable包怎么用?

    通过本文介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大时候你可以发现它可能比 Pandas 更加强大。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取数据转换为 Pandas dataframe 形式,并比较所需时间,如下所示: %...基础属性 下面来介绍 datatable frame 一些基础属性,这与 Pandas dataframe 一些功能类似。...▌排序 datatable 排序 在 datatable 通过特定列来对进行排序操作,如下所示: %%time datatable_df.sort('funded_amnt_inv') ___...在上面的例子,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 过滤语法与GroupBy语法非常相似。

    7.2K10

    媲美Pandas?PythonDatatable包怎么用?

    通过本文介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大时候你可以发现它可能比 Pandas 更加强大。...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取数据转换为 Pandas dataframe 形式,并比较所需时间,如下所示: %...基础属性 下面来介绍 datatable frame 一些基础属性,这与 Pandas dataframe 一些功能类似。...▌排序 datatable 排序 在 datatable 通过特定列来对进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____...在上面的例子,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 过滤语法与GroupBy语法非常相似。

    6.7K30

    Pandas 秘籍:1~5

    日期时间 np.datetime64, pd.Timestamp datetime64 具有纳秒精度特定时间点。...如果在创建数据过程未指定索引(本秘籍所述),pandas 会将索引默认为RangeIndex。RangeIndex与内置范围函数非常相似。 它按需产生值,并且仅存储创建索引所需最少信息量。...从某种意义上说,Pandas 结合了使用整数(列表)和标签(字典)选择数据能力。 选择序列数据 序列和数据是复杂数据容器,具有多个属性,这些属性使用索引运算符以不同方式选择数据。...有许多方法可以使用布尔下标过滤(或子集)Pandas 数据。...布尔数组整数位置与数据整数位置对齐,并且过滤器按预期进行。 这些数组也可以与.loc运算符一起使用,但是它们对于.iloc是必需。 步骤 6 和 7 显示了如何按列而不是按行进行过滤

    37.5K10

    Pandas库常用方法、函数集合

    “堆叠”为一个层次化Series unstack: 将层次化Series转换回数据框形式 append: 将一行或多行数据追加到数据末尾 分组 聚合 转换 过滤 groupby:按照指定列或多个列对数据进行分组...pandas.plotting.bootstrap_plot:用于评估统计数据不确定性,例如均值,中位数,中间范围pandas.plotting.lag_plot:绘制时滞图,用于检测时间序列数据模式...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta...: 将输入转换为Timedelta类型 timedelta_range: 生成时间间隔范围 shift: 沿着时间轴将数据移动 resample: 对时间序列进行重新采样 asfreq: 将时间序列转换为指定频率...用于访问Datetime属性 day_name, month_name: 获取日期星期几和月份名称 total_seconds: 计算时间间隔总秒数 rolling: 用于滚动窗口操作 expanding

    28610

    Pandas和Streamlit对时间序列数据进行可视化过滤

    介绍 我们每天处理数据最多类型可能是时间序列数据。基本上,使用日期时间或两者同时索引任何内容都可以视为时间序列数据集。在我们工作,可能经常需要使用日期时间本身来过滤时间序列数据。...根据任何其他形式索引过滤dataframe是一件相当麻烦任务。尤其是当日期时间在不同时。...幸运是,我们有Pandas和Streamlit在这方面为我们提供帮助,并且可以方便创建和可视化交互式日期时间过滤器。...我认为我们大多数人对Pandas应该有所了解,并且可能会在我们数据生活例行使用它,但是我觉得许多人都不熟悉Streamlit,下面我们从Pandas简单介绍开始 在处理Python数据时,Pandas...在此应用程序,我们将使用Pandas从CSV文件读取/写入数据,并根据选定开始和结束日期/时间调整数据大小。

    2.5K30
    领券