作者:ssh,字节跳动 Web Infra 团队成员 本文是我最近在公司内部写的废弃代码删除工具的一篇思考总结,目前在多个项目中已经删除约 6w 行代码。...所以需要给 rule 提供一个 varsPattern 的选项,把分析范围限定在 ts-unused-exports 给出的 导出未使用变量 中,如 varsPattern: '^foo|^bar' 。...官方的 no-unused-vars 只给出提示,没有提供 自动修复 的方案,需要自己编写,下面详细讲解。...如何删除变量 当我们在 IDE 中编写代码时,有时会发现保存之后一些 ESLint 飘红的部分被自动修复了,但另一部分却没有反应。 这其实是 ESLint 的 rule fixer 的作用。...缺点 速度慢 ,TSProgram 的初始化,以及 findAllReferences 的调用,在大型项目中速度还是有点慢。
以下是一些建议,可以帮助你从零开始学习Excel: 理解基本概念:首先了解Excel的基本组成部分,如工作簿、工作表、单元格、行、列等。...宏和VBA:对于更高级的用户,可以学习如何录制宏和编写VBA代码来自动化重复性任务。 函数学习:逐渐学习更多的内置函数,如逻辑函数、文本函数、统计函数等。...自定义视图 创建视图:保存当前的视图设置,如行高、列宽、排序状态等。 这些高级功能可以帮助用户进行更深入的数据分析,实现更复杂的数据处理需求,以及提高工作效率。...在Python编程语言中 处理表格数据通常使用Pandas库,它提供了非常强大的数据结构和数据分析工具。以下是如何在Python中使用Pandas完成类似于R语言中的操作,以及一个实战案例。...在实际工作中,直接使用Pandas进行数据处理是非常常见的做法,因为Pandas提供了对大型数据集进行高效操作的能力,以及丰富的数据分析功能。
标签:Python与Excel协同 本文将探讨学习如何在Python中读取和导入Excel文件,将数据写入这些电子表格,并找到最好的软件包来做这些事。...还可以在代码中给出该文件夹的绝对路径,而不是更改计划编写Python代码的目录。绝对路径将确保无论在哪里编写Python代码,它都能够获取数据。...由于该库提供的强大功能和灵活性,它已成为每一位数据科学家的首选。当然,这个库也有一些缺点,尤其是在处理大型数据集时,它在加载、读取和分析具有数百万条记录的大型数据集时可能会变慢。...如何将数据框架写入Excel文件 由于使用.csv或.xlsx文件格式在Pandas中装载和读取文件,类似地,可以将Pandas数据框架保存为使用.xlsx的Excel文件,或保存为.csv文件。...一旦你的环境中有了电子表格中的数据,就可以专注于重要的事情:分析数据。 然而,如果想继续研究这个主题,考虑PyXll,它允许在Python中编写函数并在Excel中调用它们。
通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...Frame 对象中,datatable 的基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 的概念是相同的:即数据以行和列的二维数组排列展示。...因此,通过 datatable 包导入大型的数据文件再将其转换为 Pandas dataframe 的做法是个不错的主意。...下面来看看如何在 datatable 和 Pandas 中,通过对 grade 分组来得到 funded_amout 列的均值: datatable 分组 %%time for i in range(100...在上面的例子中,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。
通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...对象中,datatable 的基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 的概念是相同的:即数据以行和列的二维数组排列展示。...因此,通过 datatable 包导入大型的数据文件再将其转换为 Pandas dataframe 的做法是个不错的主意。...下面来看看如何在 datatable 和 Pandas 中,通过对 grade 分组来得到 funded_amout 列的均值: datatable 分组 %%timefor i in range(100...在上面的例子中,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。
上一篇给大家介绍如何使用 Python 进行文件读写操作的方法,问题来了,如何读写的是大型文件,有没有什么方法来提高效率呢,不要捉急,这一篇来聊聊如何在Python中高效地读写大型文件。...**四、使用 `pandas` 分块处理大型 CSV 文件(适用于 CSV 文件)**:```pythonimport pandas as pddef read_large_csv_in_chunks(...)`:将 CSV 文件按块读取,`chunksize` 为每块的行数。...(line.strip())```- `linecache.getline(file_path, line_number)`:从文件中获取指定行的数据,适用于只需要读取文件中某些行的情况,避免读取整个文件...**最后**在处理大型文件时,根据文件类型和操作需求,可灵活使用上述方法,避免一次性将整个文件加载到内存中,从而提高程序的性能和稳定性。同时,可以结合不同的模块和函数,实现复杂的数据处理和分析任务。
前言 在Python的数据科学和分析领域,Pandas库是处理和分析数据的强大工具。 pandas.read_csv()函数是Pandas库中用于读取CSV(逗号分隔值)文件的函数之一。...易用性:Pandas提供了大量的方法和功能,使得数据清洗、处理和分析变得简单直观。 高性能:Pandas在内部使用Cython或C语言编写,以提高性能,特别是在处理大型数据集时。...数据聚合:Pandas能够轻松地对数据进行聚合操作,如求和、平均、最大值、最小值等。 数据重塑:Pandas提供了灵活的数据重塑功能,包括合并、分割、转换等。...CSV文件可以被大多数的电子表格软件和数据库软件以及多种编程语言读取。 2.1 常用参数 path:文件路径或文件对象。 sep:字段分隔符,默认为逗号,。 header:列名行的索引,默认为0。...df = pd.read_csv('data.csv', usecols=['Name', 'Occupation']) 3.3 处理缺失的数据 CSV文件中可能包含缺失数据,pandas.read_csv
现实世界中的大多数数据集通常都非常庞大,以千兆字节为单位,并包含数百万行。在本文中,我将讨论处理大型CSV数据集时可以采用的一些技巧。...处理大型CSV文件时,有两个主要关注点: 加载大型CSV文件时所使用的内存量。 加载大型CSV文件所花费的时间。 理想情况下,你希望最小化DataFrame的内存占用,同时减少加载所需的时间。...因此,这个数据集是用来说明本文概念的理想数据集。 将CSV文件加载到Pandas DataFrame中 首先,让我们从加载包含超过1亿行的整个CSV文件开始。...检查列 让我们检查数据框中的列: df.columns 现在,你应该意识到这个CSV文件没有标题,因此Pandas将假定CSV文件的第一行包含标题: Index(['198801', '1', '103...行数据加载到了Pandas DataFrame中。
使用它可以很好的突破操作优化上的瓶颈,而这个工具就是Modin。 Modin存在的意义就是:更改一行代码来提速pandas工作流程。...pandas vs modin CPU核使用对比 modin所做的基本上就是增加了CPU所有内核的利用率,从而提供了更好的性能。 在一个更大型机器上 在大型机器上,modin的有利用率变得更加明显。...modin的标准架构 在Modin中实现pandas API pandas API是非常多的,这可能是它具有如此广泛的应用的原因。 ?...可以在单个机器上运行相同的代码以实现高效的多进程处理,并且可以在群集上使用它来进行大型计算。...df.groupby pandas groupby编写得非常好,速度非常快。但即便如此,modin仍然胜过pandas。
「通过更改一行代码扩展你的 pandas 工作流。」 Pandas 是数据科学领域的工作者都熟知的程序库。它提供高性能、易于使用的数据结构和数据分析工具。...在大型机器上 在大型机器上,Modin 的作用就变得更加明显了。假设我们有一台服务器或一台非常强大的机器,Pandas 仍然只会利用一个内核,而 Modin 会使用所有的内核。...modin 的一般架构 在 Modin 中实现 Pandas API pandas 有大量的 API,这可能也是它应用如此广泛的原因之一。 ?...df.groupby Pandas 的「groupby」聚合函数底层编写得非常好,运行速度非常快。但是即使如此,Modin 的性能也比 Pandas 要好。...这使得该系统可以用于使用 Modin 中尚未实现操作的 notebook 中(尽管由于即将使用 Pandas API,性能会有所下降)。
行转列是一种常见的数据处理操作,所以对如何在 SQL 语句中、如何在 pandas 中实现这种行转列做过一些总结。...请参考我之前写的博文: pandas 行转列一种典型输出报表的解决方法 使用 Access 查询设计器轻松构造复杂 SQL 语句 使用 Access 查询设计器轻松构造复杂 SQL 语句 (2) 今天介绍在...Power Query (PQ) 实现行转列的操作方法,顺便说是稍微复杂一点的 IF 语句如何编写。...从 Web 导入数据,因为数据是 csv 格式,所以 PQ 用 Csv.Document() 函数来读取数据的内容。...10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3N0b25lMDgyMw==,size_16,color_FFFFFF,t_70] 我们需要点击确定后,在公式栏或高级编辑器中编写条件表达式
天才的不仅在于它的性能,在于你几乎感受不到它与 pandas 的差异——零学习成本,只需更改一行 import 语句。 无论你在数据探索、清洗还是转换环节,Modin 都能让这一过程更加流畅。...快速读写 import modin.pandas as pd # 用Modin 读取 CSV 文件,享受加速效果 df = pd.read_csv("massive_dataset.csv") 更多内存管理和性能选项...Modin 提供了更先进的功能,帮助你管理内存和提升性能,如通过不加载到内存中的方式处理大型数据集。...不妨比较一下使用 Modin 和原生 pandas 在处理大型 CSV 文件时的耗时,这将是一次很有启发性的实践。...通过扩展并行计算的优势,它克服了 pandas 在处理大型数据集时的不足,使得在个人笔记本电脑上处理上百 GB 数据成为可能。
import dtale import pandas as pd dtale.show(pd.read_csv("titanic.csv")) D-Tale库用一行代码就可以生成一个报告,其中包含数据集...D-Tale还可以为报告中的每个图表进行分析,上面截图中我们可以看到图表是可以进行交互操作的。...panda-profiling扩展了pandas DataFrame df.profile_report(),并且在大型数据集上工作得非常好,它可以在几秒钟内创建报告。...,但是对于每一个分析需要我们手动的编写代码,所以只能说是半自动化的操作,但是如果我们需要更定制化的分析,他是非常方便的。...dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括: 目标分布图 散射对图 线性判别分析 import pandas as pd import dabl df = pd.read_csv
学习Excel技术,关注微信公众号: excelperfect 标签:Python与Excel,pandas 在某些时候,如果你尝试使用Excel打开大型csv文件或文本文件,可能无法打开它们。...要求相对简单:打开一个8GB的大型csv文件,查看前几千行中的数据。如果当你选择了正确的工具——Python,那么这项看似不可能的任务很容易完成。...出于演示目的,我们不会使用8GB的大型csv文件;相反,假设使用一个只有2600行数据的较小文件。 同以前一样,从导入必需的库开始,在本练习中,我们只需要pandas。...csv文件是逗号分隔值的文件,基本上是文本文件。此方法有一个可选参数nrows,用于指定要加载的行数。 第一个变量df加载了csv文件中的所有内容,而第二个变量df_small只加载前1000行数据。...图1:两个数据框架的大小(行数,列数) 如上所示,“large_data.csv”文件总共包含2599行22列数据。还可以确认,在df_small变量中,只加载了前1000行22列数据。
Polars 简介 Polars是一个高性能的数据处理库,它旨在提供快速的数据处理能力,特别是在处理大型数据集时。Polars是由Rust语言编写的,这使得它在性能和内存安全性方面具有显著优势。...内存效率:Polars在内存管理上进行了优化,减少了不必要的内存分配和复制,这使得它在处理大型数据集时更加高效。...兼容性:Polars可以与Pandas无缝协作,允许用户在Pandas和Polars之间轻松转换数据。此外,它还支持多种数据格式,如CSV、Parquet等。...to CSV took: 9.09 seconds polars 的效率是 pandas 的 12.7 倍 读取 csv # 加载csv文件 start_time = time.time() df_pandas...总结 特点 Polars Pandas 性能优化 使用 Rust 编写底层,高性能 基于 Python 和 C,性能相对较低 并行处理 支持并行执行操作 受限于 Python 的 GIL,无法充分利用多核处理器
1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...中位数填充:适合存在极端值的数值特征。 众数填充:常用于分类特征。 1.2 数据标准化与归一化 在某些机器学习算法(如线性回归、KNN 等)中,数据的尺度差异会对模型表现产生影响。...Pandas 可以与其他库如 imbalanced-learn 结合使用,处理不平衡的数据问题。...# 逐块读取 CSV 文件 chunk_size = 100000 # 每次读取 10 万行 for chunk in pd.read_csv('large_file.csv', chunksize=...import dask.dataframe as dd # 使用 Dask 读取大型 CSV 文件 df_dask = dd.read_csv('large_file.csv') # 像操作 Pandas
每段数据是如何用逗号分隔的。通常,第一行标识每个数据块——换句话说,数据列的名称。之后的每一行都是实际数据,仅受文件大小限制。 CSV文件通常由处理大量数据的程序创建。...它们是一种从电子表格和数据库导出数据以及导入或在其他程序中使用数据的方便方法。例如,您可以将数据挖掘程序的结果导出到CSV文件中,然后将其导入到电子表格中,以分析数据、为演示生成图表或准备发布报告。...CSV文件非常容易通过编程处理。任何支持文本文件输入和字符串操作的语言(如Python)都可以直接使用CSV文件。 读取CSV文件内容 在Python中,使用csv库来读取CSV文件内容。...写入数据到CSV文件 上面编写了读取内容的程序,下面继续编写一个写文件的程序。我们写到b.csv文件中。...写csv 让我们用新的列名将数据写入一个新的CSV文件: import pandas df = pandas.read_csv('hrdata.csv', index_col=
无论是 CSV文件的导入与解析,还是 数据清洗与格式化,都将带你快速上手,轻松解决日常开发中的数据处理难题!...丰富的数据读取接口(如 read_csv()、read_excel() 等)。 强大的数据清洗、整形、合并和可视化功能。...下载与安装 2.1 使用 pip 安装 pip install pandas 说明: 建议安装在 虚拟环境 中(如 Conda 或 venv)以避免版本冲突。...使用 pandas 的 read_csv() 函数读取 CSV 文件具有以下优势: 高效读取: 相较于手动编写 CSV 解析逻辑,read_csv() 处理速度更快、兼容性更好。...指定分隔符,默认为逗号 , pd.read_csv('data.csv', sep=';') header 指定列名行的起始位置,默认为 0 表示第一行是列名。
参考链接: Python | 使用pandas.read_csv()读取csv 1、pandas简介 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。...Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。...2、Pandas 中的数据类型 Pandas 基于两种数据类型,series 和 dataframe。 series 是一种一维的数据类型,其中的每个元素都有各自的标签。...csv 文件里导入了数据,并储存在 dataframe 中。...如果skip_blank_lines=True,则header=0表示数据开始的第一行。header可以是一个整数的列表,如[0,1,3]。
领取专属 10元无门槛券
手把手带您无忧上云