我在保险行业工作,每天处理大量数据。有一次,我受命将多个Excel文件合并到一个“主电子表格”中。每个Excel文件都有不同的保险单数据字段,如保单编号、年龄、性别、投保金额等。这些文件有一个共同的列,即保单ID。在过去,我只会使用Excel和VLOOKUP公式,或者Power Query的合并数据函数。这些工具工作得很好,然而,当我们需要处理大型数据集时,它们就成了一种负担。
这篇万字长文,是黄同学辛苦为大家辛苦翻译排版。希望大家一定从头到尾学习,否则,可能会找不到操作的数据源。
这是一款与 Python 深度集成、基于 Web 开发、无需在各个工具之间切换、适用大部分职业工作场景的开源电子表格应用程序。对它的评价只有 Wow awesome,amazing!
本节为《Chapter 1:Why Python for Excel?》的第一部分,简单地讲解了Excel的历史,Excel编程的最佳实践,以及Excel为适应发展而作出的变化。 当你每天花费很多时间
Excel是大家最常用的数据分析工具之一,借助它可以便捷地完成数据清理、统计计算、数据分析(数据透视图)和图表呈现等。
本文将探讨学习如何在Python中读取和导入Excel文件,将数据写入这些电子表格,并找到最好的软件包来做这些事。
在本文中,我们将使用Python创建高保真的Excel电子表格。“高保真”意味着Python生成的Excel电子表格看起来像是由人创建的真实Excel文件一样,包含值、公式、不同的格式以及图表。
Excel 是一个流行且功能强大的 Windows 电子表格应用。openpyxl模块允许您的 Python 程序读取和修改 Excel 电子表格文件。例如,您可能有从一个电子表格中复制某些数据并粘贴到另一个电子表格中的枯燥任务。或者,您可能必须遍历数千行,然后只挑选出其中的一小部分,根据某些标准进行小的编辑。或者你可能不得不查看数百份部门预算的电子表格,寻找任何赤字。这些正是 Python 可以为您完成的那种枯燥、无需动脑的电子表格任务。
本文展示如何使用Python将多个Excel文件合并到一个主电子表格中。假设你有几十个具有相同数据字段的Excel文件,需要从这些文件中聚合工作表。我们知道,手工完成这项工作效率非常低,而使用Python自动化合并文件将为你节省大量时间。
在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!然而,当数据集太大,或者电子表格中有公式时,这项操作有时会变得很慢。因此,我们将探讨如何使用Python从数据表中删除重复项,它超级简单、快速、灵活。
由于许多潜在的 pandas 用户对 SQL 有一定的了解,本页旨在提供使用 pandas 执行各种 SQL 操作的一些示例。
Microsoft Office 被广泛用于商务和运营分析中, 其中 Excel 尤其受欢迎。Excel 可以用于存储表格数据、创建报告、图形趋势等。在深入研究用 Python 处理 Excel 文档之前,让我们先了解一些基本术语:
如果你是一名交易员或者从事金融服务行业,那么 Excel 就是你的生计之本。有了它,你可以分析价格和实时数据、评估交易组合、计算 VaR、执行回测等等;有了它,你就是数据透视表、公式、图表甚至 VBA 和 PowerQuery 的专家。
最后,我们需要启用对 VBA 项目对象模型的信任访问。你可以通过导航到文件选项信任中心设置宏来做到这一点:
每个月的月底,“分享与成长群”要汇总所有成员的原创文章,这次我改用了水滴微信平台把数据采集到一个电子表格文件中。在《零基础学编程019:生成群文章目录》这一节里,我已经可以用读csv文本文件的办法,配
随着大数据、企业数字化转型等不可逆趋势的推动下,似乎一切变得皆可量化和数据化,企业在解决问题时,也更为倾向于以数据表格来作为判断决策是否正确的重要标志,这时具有数据思维和数据分析处理技能,成了当前及未来人才发展不可忽视的能力之一。今天给大家带来3款Excel替代品的对比,由大家来评判一下。
能够对数据进行切片和切分对于处理数据至关重要。与Excel中的筛选类似,我们还可以在数据框架上应用筛选,唯一的区别是Python pandas中的筛选功能更强大、效率更高。可能你对一个500k行的Excel电子表格应用筛选的时候,会花费你很长的时间,此时,应该考虑学习运用一种更有效的工具——Python。
这些框架都是开源的,可以自由使用和修改,适合于创建各种类型的在线电子表格应用程序。
本文将通过图解的方式,使用纯前端表格控件 SpreadJS 来一步一步实现在线的电子表格产品(例如可构建Office 365 Excel产品、Google的在线SpreadSheet)。 工具简介:
python处理Excel实现自动化办公教学(数据筛选、公式操作、单元格拆分合并、冻结窗口、图表绘制等)【三】
很多开发者说自从有了 Python/Pandas,Excel 都不怎么用了,用它来处理与可视化表格非常快速。但是这样还是有一大缺陷,操作不是可视化的表格,因此对技能要求更高一点。近日,开发者构建了名为 Grid studio 的开源项目,它是一个基于网页的表格应用,完全结合了 Python 和 Excel 的优势。
是的,在一个界面上同时展示可视化表格与代码,而且同时通过表格与代码修改数据,这不就是 Python 与 Excel 的结合吗?
前 言 如果你是数据行业的一份子,那么你肯定会知道和不同的数据类型打交道是件多么麻烦的事。不同数据格式、不同压缩算法、不同系统下的不同解析方法——很快就会让你感到抓狂!噢!我还没提那些非结构化数据和半结构化数据呢。 对于所有数据科学家和数据工程师来说,和不同的格式打交道都乏味透顶!但现实情况是,人们很少能得到整齐的列表数据。因此,熟悉不同的文件格式、了解处理它们时会遇到的困难以及处理某类数据时的最佳/最高效的方法,对于任何一个数据科学家(或者数据工程师)而言都必不可少。 在本篇文章中,你会了解到数据科学家
Microsoft Excel LTSC 2021 for Mac是一款适用于Mac操作系统的电子表格软件,它主要面向需要使用电子表格来管理和分析数据的人群。这包括但不限于企业、学校、个体经营者和家庭用户等。
很多开发者说自从有了Python/Pandas,Excel都不怎么用了,用它来处理与可视化表格非常快速。但是这样还是有一大缺陷,操作不是可视化的表格,因此对技能要求更高一点。
Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性能,高效率和高水平的数据分析库.
数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。
在现代的Web应用开发中,与Excel文件的导入和导出成为了一项常见而重要的任务。无论是数据交换、报告生成还是数据分析,与Excel文件的交互都扮演着至关重要的角色。本文小编将为大家介绍如何在熟悉的电子表格 UI 中轻松导入 Excel 文件,并以编程方式修改表格或允许用户进行编辑,最后使用葡萄城公司的纯前端表格控件SpreadJS组件它们导出回 Excel 文件。
近日,开发者构建了名为 Grid studio 的开源项目,它是一个基于网页的表格应用,完全结合了 Python 和 Excel 的优势。
Python 是最流行、功能最强大的编程语言之一。由于它是自由开源的,因此每个人都可以使用。大多数 Fedora 系统都已安装了该语言。Python 可用于多种任务,其中包括处理逗号分隔值(CSV)数据。CSV文件一开始往往是以表格或电子表格的形式出现。本文介绍了如何在 Python 3 中处理 CSV 数据。
JavaScript在前端领域占据着绝对的统治地位,目前更是从浏览器到服务端,移动端,嵌入式,几乎所有的所有的应用领域都可以使用它。技术圈有一句很经典的话“凡是能用JavaScript实现的东西,最后都会用JavaScript实现”。 Excel 电子表格自 1980 年代以来一直为各行业所广泛使用,至今已拥有超过3亿用户,大多数人都熟悉 Excel 电子表格体验。许多企业在其业务的各个环节中使用了 Excel 电子表格进行数据管理。
您可以通过打开一个新的终端窗口并运行pip install --user ezsheets来安装 EZSheets。作为安装的一部分,EZSheets 还将安装google-api-python-client、google-auth-httplib2和模块。这些模块允许你的程序登录到 Google 的服务器并发出 API 请求。EZSheets 处理与这些模块的交互,所以您不需要关心它们如何工作。
大家好,我是云朵君! 加载一个Jupyter插件后,无需写代码就能做数据分析,还帮你生成相应代码?
你用过pandas+openpyxl吗?今天为大家分享一个Python自动化办公文档中,没有提到的知识点。
作者:ROGER HUANG 本文翻译自:http://code-love.com/2017/04/30/excel-sql-python/ 来源:https://www.jianshu.com/p/51bb7726231b 本教程的代码和数据可在 Github 资源库 中找到。有关如何使用 Github 的更多信息,请参阅本指南。 数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大
CSV(comma-separated value,逗号分隔值)文件格式是一种非常简单的数据存储与分享方式。CSV 文件将数据表格存储为纯文本,表格(或电子表格)中的每个单元格都是一个数值或字符串。与 Excel 文件相比,CSV 文件的一个主要优点是有很多程序可以存储、转换和处理纯文本文件;相比之下,能够处理 Excel 文件的程序却不多。所有电子表格程序、文字处理程序或简单的文本编辑器都可以处理纯文本文件,但不是所有的程序都能处理 Excel 文件。尽管 Excel 是一个功能非常强大的工具,但是当你使用 Excel 文件时,还是会被局限在 Excel 提供的功能范围内。CSV 文件则为你提供了非常大的自由,使你在完成任务的时候可以选择合适的工具来处理数据——如果没有现成的工具,那就使用 Python 自己开发一个!
当Excel中有大量需要进行处理的数据时,使用Python不失为一种便捷易学的方法。接下来,本文将详细介绍多种Python方法来处理Excel数据。
Microsoft Excel是世界上最普遍的电脑工具之一。面向非技术人员和想要深入发掘Excel置入功能以外的功能的资深用户们,我们很骄傲地宣布,最简单最有效的达到目的的方法是使用我们的产品:Excel的Wolfram CloudConnector(https://www.wolfram.com/cloud-connector-for-excel/),任何用Excel的人都可以在Windows系统上使用它。你可以直接从你的电子表格中体验到Wolfram语言强大的计算能力。
领取专属 10元无门槛券
手把手带您无忧上云