实战示例代码TensorFlow示例:简单线性回归import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 数据准备...简单线性回归模型训练结果图(略,实际展示时请插入训练后的线性回归图)PyTorch示例:线性回归模型import torchimport torch.nn as nnimport torch.optim...线性回归模型拟合结果图(略,实际展示时请插入训练后的线性回归拟合图)QA环节Q1:TensorFlow和PyTorch哪个更适合初学者?...而TensorFlow的静态计算图和学习曲线相对较陡峭,可能需要更多的时间来熟悉。Q2:在生产环境中,哪个框架更受欢迎?...A2:在生产环境中,TensorFlow因其高性能、可扩展性和强大的部署能力而备受青睐。TensorFlow提供了从移动设备到服务器的全方位支持,适用于各种应用场景。
5.2 创建线性回归模型 使用Scikit-Learn库中的LinearRegression类来创建线性回归模型。...模型评估:使用适当的评估指标(如MSE和R²)评估模型性能,并确保预测值有效。 结果可视化:通过散点图和残差图直观展示模型的预测效果和误差分布。...通过遵循这些注意事项,你可以确保在Pycharm中顺利构建和应用线性回归模型进行房价预测。 本文详细介绍了如何在Pycharm中使用线性回归模型进行房价预测。...通过这个案例,希望你能更好地理解线性回归的基本原理和实操步骤,并能够应用到其他类似的预测问题中。 线性回归是机器学习中的基础算法之一,尽管它简单,但在很多实际应用中依然非常有效。...通过本文的学习,你不仅掌握了如何在Pycharm中实现线性回归,还提升了对数据科学项目的整体把握能力。如果你有任何问题或建议,欢迎在评论区留言讨论。
完成本教程后,你将会学到以下内容: 如何生成多类别分类预测的测试问题 如何生成二元分类预测的测试问题 如何生成线性回归预测的测试问题 教程概述 本教程共三部分,内容如下: 测试数据集 分类测试问题 回归测试问题...在本教程中,我们将介绍一些为分类问题和回归算法生成测试问题的案例。 分类测试问题 分类就是为观察对象贴标签的问题。 在本节中,我们讨论三种分类问题:斑点、月形分布和圆形分布。...回归预测问题 回归是预测一个具体量值的问题。 make_regression()方法将创建一个输入和输出之间具有线性关系的数据集。 你可以配置实例代码中的样例数量、输入特性的数量、噪声级别等等。...如果你对这些扩展中的任意一个感兴趣,我很乐意知道你的想法。...总结 在本教程中,您意识到了测试的问题,以及如何在Python中解决这个问题。
数据集中的数据有完整的定义(例如线性或非线性)使你可以探索特定的算法行为。scikit-learn Python 库提供一套函数,用于从可配置测试问题中生成样本来进行回归和分类。...在本教程中,你将学习测试问题及如何在 Python 中使用 scikit-learn 进行测试。...在本教程中,我们将看一些为分类和回归算法生成测试问题的例子。 分类测试问题 分类是将标签分配给数据的问题。在本节中,我们将看三个分类问题:blobs、moons 和 circles。...Circles 测试分类问题的散点图 回归测试问题 回归是根据观察数据预测数量的问题。make_regression() 函数将创建一个输入和输出具有线性关系的数据集。...回归测试问题的散点图 扩展 本节列出了一些你可能想要探讨的扩展该教程的想法。 比较算法。选择一个测试问题,并比较该问题的一系列算法并汇报性能。 放大问题。
from sklearn import linear_model linear_model.LinearRegression() #调用线性回归模型 Matplotlib 它是Python强大的数据可视化工具...,它更关注统计模型的可视化,如热图。...']=False #用来正常显示负号 ---- 3.Matplotlib思维导图 绘图库Matplotlib 安装配置、Matplotlib快速入门、图形绘制、风格和样式、Matplotlib扩展 Matplotlib...Scikit-Learn中的机器学习模型是非常丰富的,包括线性回归、决策树、SVM、KMeans、KNN、PCA等等,用户可以根据具体分析问题的类型选择该扩展包的合适模型,从而进行数据分析。...离散化、特征编码、缺失值补全 分类 K近邻分类、贝叶斯分类、决策树分类、SVM分类、随机森林分类、集成学习(Bagging/Boosting)、神经网络模型 回归 线性回归、Lasso回归、支持向量机回归
基本的Python 语法 和编程方法 能够使用Jupyter notebook 能够使用 Python 库,如 NumPy、 pylab、 seborn、 matplotlib、scikit-learn...重要的数据可视化工具包括 Python 的 matplotlib 包等。 6. 线性回归 学习简单和多重线性回归分析的基本原理,用来观测监督式学习的连续性结果。...线性回归,作为一种基础且强大的预测方法,通过建立自变量(解释变量)与因变量(响应变量)之间的线性关系来预测数值型数据。...简单线性回归涉及一个自变量和一个因变量,而多重线性回归则包含多个自变量,能够提供更为复杂的预测模型。...AWS和Azure等平台则扩展了这一能力,至云端计算与存储,让数据科学家能够在全球范围内协作和部署模型。
基础篇 书推荐:《用python做科学计算》 扩展库 简介 Numpy数组支持,以及相应的高效处理函数 Scipy矩阵支持,以及相应的矩阵数值计算模块 Matplotlib强大的数据可视化工具、作图库...是Scipy、Matplotlib、Pandas等高级扩展库的依赖库。其内置函数处理速度是C语言级别的。...常用的分析方法:简单统计量分析(如max、min);3σ原则(99.7%);箱型图(QL-1.5IQR,QU+1.5IQR) 一致性分析:直属局矛盾性、不相容性 产生原因:数据集成过程中,数据来自不同数据源...D中相邻n个数的计算特征 《贵州大数据培训机构 》 统计作图函数,基于Matplotlib Python主要统计作图函数 《贵阳大数据报名学习 》 plot 绘制线性二维图,折线图 pie 绘制饼图 hist...因/自变量是线性关系 对一个或多个自/因变量线性建模,用最小二乘法求系数 非线性回归 因/自变量是非线性 非线性建模 Logistic回归 因变量为0或1 广义线性回归特例,利用Logistic函数将因变量控制
引言 回归分析是统计学和机器学习中广泛使用的技术,主要用于建立因变量与自变量之间的关系模型。在实际应用中,回归分析不仅可以帮助我们理解数据,还能进行有效的预测。...2.2 多元线性回归 多元线性回归扩展了简单线性回归,可以处理多个自变量,仍然使用最小二乘法来拟合数据。这种方法在数据维度较高时尤为重要。...应用场景 回归分析在多个领域中都有重要应用: 经济学:预测经济指标,如国内生产总值(GDP)和失业率。 医疗:分析健康数据,以预测疾病发生的概率。 市场营销:评估广告支出对销售额的影响。...如何在 Python 中实现回归分析 4.1 数据准备 我们将使用 Scikit-learn 和 Pandas 库来实现线性回归。首先,导入必要的库,并创建一个示例数据集。...在未来的学习中,你可以深入了解更复杂的回归模型和技术,如时间序列分析、交叉验证、超参数调优等。不断练习和实践将帮助你在数据分析和机器学习领域更进一步。
第2章,“TensorFlow方法”建立了如何通过多种方式将第1章中的所有算法组件连接到计算图中,以创建简单的分类器。 一路上,我们涵盖了计算图,损失函数,反向传播和数据训练。...第3章,线性回归,重点是使用TensorFlow来探索各种线性回归技术,如戴明,套索,脊,弹性网和逻辑回归。 我们演示如何在TensorFlow计算图中实现每个。 ...第6章,神经网络涵盖了如何在TensorFlow中实现神经网络,从操作门和激活功能概念开始。然后我们显示一个浅层神经网络,并展示如何建立各种不同类型的图层。...第8章,通过说明如何在具有卷积神经网络(CNN)的图像上使用神经网络来扩展我们对神经网络的知识。我们展示如何构建一个简单的CNN用于MNIST数字识别,并将其扩展到CIFAR-10任务中的彩色图像。...第9章,循环神经网络解释了如何在TensorFlow中实现复发神经网络(RNN)。我们展示如何做文本垃圾邮件预测,并扩展RNN模型,以基于莎士比亚的文本生成。
逻辑回归算法是一种用于二分类的机器学习算法。线性回归我们用这个式子: ? 问题是这些预测对于分类来说是不合理的,因为真实的概率必然在0到1之间。...import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline 数据集 让我们从将titanic_train.csv文件读入...我们稍后可能会删除这个,或者将其更改为另一个特性,如“Cabin Known: 1或0” 让我们继续可视化更多的数据! 根据性别存活下来的人数的计数图。...我们可以看到,在高级舱中,较富裕的乘客往往年龄较大,这是有道理的。我们将根据Pclass计算的平均年龄来填补年龄缺失值。...sklearn.metrics import classification_report print(classification_report(y_test,predictions)) 本文简要概述了如何在
matplotlib matplotlib是最流行的用于绘制图表和其它二维数据可视化的Python库。...SciPy SciPy是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包: scipy.integrate:数值积分例程和微分方程求解器。...scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。 scipy.optimize:函数优化器(最小化器)以及根查找算法。...scipy.sparse:稀疏矩阵和稀疏线性系统求解器。 scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。...回归模型:线性回归,广义线性模型,健壮线性模型,线性混合效应模型等等。 方差分析(ANOVA)。 时间序列分析:AR,ARMA,ARIMA,VAR和其它模型。
前言 大家好,在之前的文章中我们已经讲解了很多Python数据处理的方法比如读取数据、缺失值处理、数据降维等,也介绍了一些数据可视化的方法如Matplotlib、pyecharts等,那么在掌握了这些基础技能之后...主要有以下功能: 探索性分析:包含列联表、链式方程多重插补等探索性数据分析方法以及与统计模型结果的可视化图表,例如拟合图、箱线图、相关图、时间序列图等 回归模型:线性回归模型、非线性回归模型、广义线性模型.../statsmodels 线性回归模型:普通最小二乘估计 线性模型有普通最小二乘(OLS)广义最小二乘(GLS)、加权最小二乘(WLS)等,Statsmodels对线性模型有较好的支持,来看个最简单的例子...回归诊断:估计回归模型 首先导入相关包 %matplotlib inline from statsmodels.compat import lzip import numpy as np import...:多重共线性 检查多重共线性可以使用 np.linalg.cond(results.model.exog) 结果是702.1792145490062,说明存在较强多重共线性。
并且应具备数据基础知识、数据可视化和线性回归方面的能力。 1.1 数据基础知识 能够对数据进行操作、清理、结构化、扩展和工程化。...能够使用数据可视化工具,包括Python的matplotlib和seaborn包;和R的ggplot2包。...1.3 监督学习(预测连续目标变量) 熟悉线性回归和其他高级回归方法。能够使用scikit-learn和caret等软件包来建立线性回归模型。...,如KNeighbors回归(KNR)和支持向量回归(SVR)。...了解评估回归模型的各种指标,如MSE(平均平方误差)、MAE(平均绝对误差)和R2得分 能够比较不同的回归模型 2.
如Q1对应黄色,Q2对应青色?...sns.regplot(x,y,data)用于绘制散点+回归曲线图,默认包含置信区间,主要还是线性回归。...:是否使用逻辑回归;•marker:散点的标记字符;•color:控制散点和回归线的颜色; regplot()进行非线性回归的代码如下,主要是改了order参数,示例数据建的是一个y=x^3的数据集。...regplot的分面绘图功能,关于分面后续再展开,residplot用于绘制线性回归的残差(residuals)。...对于单一变量,我们可以统计出其在列中的出现次数,绘制柱状图、饼图等,用Matplotlib绘制需要自己做数据透视或value_counts()操作。
监督学习常用的模型有:线性回归、朴素贝叶斯、K最近邻、逻辑回归、支持向量机、神经网络、决策树、集成学习(如LightGBM)等。...如下示例通过逻辑回归分类模型,根据温湿度、风速等情况去预测是否会下雨。 逻辑回归简介 逻辑回归虽然名字有带“回归”,但其实它是一种广义线性的分类模型,由于模型简单和高效,在实际中应用非常广泛。...线性回归简介 线性回归模型前提假设是y和x呈线性关系,输入x,模型决策函数为Y=wx+b。模型的学习目标为极小化均方误差损失函数。模型的优化算法常用最小二乘法求解最优的模型参数。...import networkx as nx # 导入networkx图网络库 import matplotlib.pyplot as plt from networkx.algorithms import...本书中对强化学习仅做简单介绍,有兴趣可以自行扩展。
可视化支持集成多种可视化工具和库(如 Matplotlib、Seaborn、Plotly),支持生成丰富的图表,便于展示建模结果。...回归分析:包括线性回归、逻辑回归、多元回归等,用于建立预测模型。因子分析和聚类分析:适用于探索性数据分析,帮助识别数据中的潜在结构。...多元统计分析:如主成分分析(PCA)、判别分析、聚类分析等。生存分析:用于分析生存时间和事件发生的概率。加权回归分析:适用于处理具有不同权重的数据集。...它特别适合需要进行数学优化建模的场景,如线性规划(LP)、整数规划(IP)、非线性规划(NLP)、动态规划等。...Matplotlib 以其灵活性、扩展性和强大的功能,成为了数据可视化的标准工具之一。它不仅支持基础的二维图形绘制,还能创建复杂的三维图形和交互式图表。
鸢尾花数据集介绍 本章采用Python的Sklearn机器学习库中自带的数据集——鸢尾花数据集。简单分析数据集之间特征的关系图, 根据花瓣长度、花瓣宽度、花萼长度、花萼宽度四个特征进行绘图。...本章采用Python的Sklearn机器学习库中自带的数据集——鸢尾花数据集。简单分析数据集之间特征的关系图,根据花瓣长度、花瓣宽度、花萼长度、花萼宽度四个特征进行绘图。...numpy as np #转换成数组 x = np.array(x).reshape(len(x),1) y = np.array(y).reshape(len(y),1) 第二步 导入Sklearn机器学习扩展包中线性回归模型...扩展包并绘制相关图形 #第三步 画图 import matplotlib.pyplot as plt plt.scatter(x,y,s=100) plt.plot(x,pre,”r-“,linewidth...其中散点图为鸢尾花真实的花萼长度和花萼宽度关系,红色直线为预测的线性回归方程,即预测结果。
多元线性回归 多元线性回归试图通过将线性方程拟合到观察数据来模拟两个或更多个特征与响应之间的关系。显然,它只不过是简单线性回归的扩展。 考虑具有p个特征(或独立变量)和一个响应(或因变量)的数据集。...如下所示,第一个图表示线性相关变量,其中第二个和第三个图中的变量很可能是非线性的。 因此,第一个数字将使用线性回归给出更好的预测。 ? 很少或没有多重共线性:假设数据中很少或没有多重共线性。...同方差性:同方差性描述了一种情况,其中误差项(即,自变量和因变量之间的关系中的“噪声”或随机扰动)在自变量的所有值上是相同的。如下所示,图1具有同方差性,而图2具有异方差性。 ?...当我们到达本文末尾时,我们将讨论下面的线性回归的一些应用。 应用 1.趋势线:趋势线代表一些定量数据随时间的变化(如GDP,油价等)。这些趋势通常遵循线性关系。因此,可以应用线性回归来预测未来值。...3.财务:资本价格资产模型使用线性回归来分析和量化投资的系统风险。 4.生物学:线性回归用于模拟生物系统中参数之间的因果关系。
Statsmodels 简介 Statsmodels 建立在 NumPy 和 SciPy 的基础上,提供了易于使用的接口来实现线性回归、广义线性模型(GLM)、时间序列分析(如 ARIMA)、假设检验等功能...线性回归(Linear Regression) Statsmodels 的 OLS(普通最小二乘法)是进行线性回归的核心工具。它可以拟合模型并返回详细的统计结果。...广义线性模型(GLM) GLM 扩展了线性回归,适用于非正态分布的因变量(如二项分布、泊松分布)。...使用 matplotlib 绘制结果,保存为图片。 4. 假设检验 Statsmodels 提供多种统计检验工具,如 t 检验、卡方检验等。...使用 Matplotlib 绘制原始数据点和插值曲线。 4. 线性代数(Linear Algebra) scipy.linalg 提供了丰富的线性代数工具,如矩阵分解、求逆、特征值计算等。
,多项式模型引入了高次项,自变量的指数大于1,例如一元二次方程: 一元三次方程: 推广到一元n次方程: 上述表达式可以简化为: 与线性回归的关系 多项式回归可以理解为线性回归的扩展...,和一个线性回归器串联为一个管线 # 多项式特征扩展:对现有数据进行的一种转换,通过将数据映射到更高维度的空间中 # 进行多项式扩展后,我们就可以认为,模型由以前的直线变成了曲线 # 从而可以更灵活的去拟合数据...如何处理欠拟合、过拟合 欠拟合:提高模型复杂度,如增加特征、增加模型最高次幂等等; 过拟合:降低模型复杂度,如减少特征、降低模型最高次幂等等....线性回归模型变种 过拟合还有一个常见的原因,就是模型参数值太大,所以可以通过抑制参数的方式来解决过拟合问题.如下图所示,右图产生了一定程度过拟合,可以通过弱化高次项的系数(但不删除)来降低过拟合....线性回归总结 (1)什么是线性模型:线性模型是自然界最简单的模型之一,反映自变量、因变量之间的等比例增长关系 (2)什么时候使用线性回归:线性模型只能用于满足线性分布规律的数据中 (3)如何实现线性回归