首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PyTorch,TensorFlow和NumPy中Stack Vs Concat | PyTorch系列(二十四)

我们将研究在PyTorch,TensorFlow和NumPy中的堆栈和串联。我们开始做吧。 在大多数情况下,沿着张量的现有轴进行连接非常简单。当我们想沿着新的轴进行连接时,通常会产生混乱。...如何在张量中添加或插入轴 为了演示添加轴的想法,我们将使用PyTorch。...当我们叠加的时候,我们创建了一个新的轴这是以前不存在的这发生在我们序列中的所有张量上,然后我们沿着这个新的序列。 让我们看看如何在PyTorch中实现这一点。...现在,让我们将这些张量彼此串联。要在TensorFlow中做到这一点,我们使用tf.concat()函数,而不是指定一个dim(如PyTorch),而是指定一个axis。这两个意思相同。...现在,假设我们的任务是将这些张量连接在一起以形成三个图像的单批张量。 我们是串联还是堆叠? 好吧,请注意,在此示例中,仅存在三个维度,对于一个批次,我们需要四个维度。这意味着答案是沿新轴堆叠张量。

2.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习|Tensorflow2.0进阶

    张量的合并可以通过拼接和堆叠来实现,拼接操作并不会产生新的维度,仅在现有的维度上合并,而堆叠会创建新维度。选择使用拼接还是堆叠操作来合并张量,取决于具体的场景是否需要创建新维度。...拼接 我们可以直接使用Tensorflow中的tf.concat(tensors,axis)函数拼接张量: tensors:所有需要合并的张量List。 axis:参数指定需要合并的维度索引。...当num_or_size_splits为单个数值时,如10,表示等长切割为10份;当num_or_size_splits为List时,List的每个元素表示每份的长度,如[2,4,2,2]表示切割为 4...Tensorflow中填充操作可以用tf.pad(x,padding)实现: x:需要填充的张量。 padding:嵌套list,比如[[0,3]]表示在第一个维度左边不填充,右边填充3个单元。...Tensorflow中也提供了数据限幅的方法,我们可以通过tf.maximum(x,a)实现数据的下限幅,此时的数据将会大于a,同样我们可以通过tf.minimum(x,a)实现数据的上限幅,此时的数据将会小于

    94620

    谷歌大脑Quoc发布Primer,从操作原语搜索高效Transformer变体

    而当模型参数量大到一定程度的时候,研究人员也在考虑如何在缩小模型的情况下,保持性能不变。...研究人员使用TensorFlow(TF)中的操作来构造Transformer 变体的搜索空间。在这个搜索空间中,每个程序定义了自回归语言模型的可堆叠解码器块。...给定输入张量是一个长度为n且嵌入长度为d的序列,程序能够返回相同形状的张量。 堆叠时,其输出表示每个序列位置的下一个token的预测embedding,并且程序只指定模型架构,没有其他内容。...每个子程序都由指令组成,这些指令被转换为TensorFlow代码行。...指令操作映射到原语词汇表中的基本TensorFlow库函数或父DNA子程序之一,原语词汇表由简单的原语TF函数组成,如ADD、LOG、MATMUL等等,但像self-attention这样的高级构建块不是搜索空间中的操作

    50220

    这里有一份TensorFlow2.0中文教程(持续更新中)

    近两个月,网上已经出现了大量 TensorFlow 2.0 英文教程。在此文章中,机器之心为大家推荐一个持续更新的中文教程,以便大家学习。 ?...过去一段时间,机器之心为大家编译介绍了部分英文教程,例如: 如何在 TensorFlow 2.0 中构建强化学习智能体 TensorFlow 2.0 到底怎么样?...简单的图像分类任务探一探 此文章中,机器之心为大家推荐一个持续更新的中文教程,方便大家更系统的学习、使用 TensorFlow 2.0 : 知乎专栏地址:https://zhuanlan.zhihu.com...构建简单模型 2.1 模型堆叠 最常见的模型类型是层的堆叠:tf.keras.Sequential 模型 model = tf.keras.Sequential() model.add(layers.Dense...使用函数式 API 构建的模型具有以下特征: 层实例可调用并返回张量。 输入张量和输出张量用于定义 tf.keras.Model 实例。 此模型的训练方式和 Sequential 模型一样。

    1.1K30

    这里有一份TensorFlow2.0中文教程(持续更新中)

    过去一段时间,机器之心为大家编译介绍了部分英文教程,例如: 如何在 TensorFlow 2.0 中构建强化学习智能体 TensorFlow 2.0 到底怎么样?...简单的图像分类任务探一探 此文章中,机器之心为大家推荐一个持续更新的中文教程,方便大家更系统的学习、使用 TensorFlow 2.0 : 知乎专栏地址:https://zhuanlan.zhihu.com...导入 tf.keras tensorflow2 推荐使用 keras 构建网络,常见的神经网络都包含在 keras.layer 中 (最新的 tf.keras 的版本可能和 keras 不同) import...构建简单模型 2.1 模型堆叠 最常见的模型类型是层的堆叠:tf.keras.Sequential 模型 model = tf.keras.Sequential() model.add(layers.Dense...使用函数式 API 构建的模型具有以下特征: 层实例可调用并返回张量。 输入张量和输出张量用于定义 tf.keras.Model 实例。 此模型的训练方式和 Sequential 模型一样。

    5K50

    张量的基础操作

    数学运算:在多线性代数中,张量用于描述涉及多个向量或矩阵的操作。 物理和工程:在物理学和工程学中,张量用于描述具有多个方向性质的现象,如应力和应变。...接下来我们看看张量的基础操作 张量类型转换 在深度学习框架中,如TensorFlow或PyTorch,张量类型转换是一个常见的操作。...这通常涉及到将一个张量的数据类型转换为另一个数据类型,以便满足特定的计算需求或优化内存使用。 TensorFlow 在TensorFlow中,你可以使用tf.cast函数来转换张量的类型。...torch.stack() 函数用于在新的维度上堆叠张量。...它接受一个张量列表作为输入,并返回一个新的张量,其中每个输入张量都沿着新添加的维度进行堆叠。

    19010

    如何在TensorFlow 2.0中构建强化学习智能体

    在这一教程中,我们将会使用 TensorFlow 2.0 新特性,并借助深度强化学习中的 A2C 智能体解决经典 CartPole-v0 环境任务。...TensorFlow 2.0 版的宗旨是让开发者们能够更轻松,在深度强化学习上这一理念显然也得到了发扬:在这个例子中,我们的智能体源代码不到 150 行!...,所以我们最好将其安装在单独的(虚拟)环境中。...,这种算法学习如何在一些具体的步骤中达到一个目标或者最大化;例如,最大化一个游戏中通过一些行动而获得的得分。...结论 希望本文可以让你了解深度强化学习及其在 TensorFlow 2.0 中的实现方式。请注意,在文中使用的仍然是「每晚预览版本」,它甚至还不是正式版的候选版本。

    1.3K20

    TF-char5-TF2高级操作

    char5-TF高阶操作 第五章主要是介绍了TensorFlow2的几个高阶操作,包含: 合并与分割 数据统计 张量比较 填充与复制 数据限幅 张量的高级操作 数据加载及预处理 ?...合并与分割 合并 将多个张量在一个维度上合并成一个张量。合并有分为两种:拼接concatenate和堆叠stack。...创建新的维度,新维度的位置是任意的 可以同时堆叠多个张量 进行堆叠的张量维度必须一致 axis的用法和tf.expand_dims中相同: axis \geq 0 表示当前维度之前插入 axis <...)实现 x:待分割张量 axis:分割的维度索引号 num_or_size_splits:切割方案 当num_or_size_splits为单个数值时,如10,表示切割 为 10 份 当 num_or_size_splits...tf.where(cond) # 获取 cond 中为 True 的元素索引 demo 获取张量中的正数及其索引 x = tf.random.normal([3,3]) # 构造 a mask=x>

    2.7K10

    从GPU的内存访问视角对比NHWC和NCHW

    它们决定了多维数据,如图像、点云或特征图如何存储在内存中。 NHWC(样本数,高度,宽度,通道):这种格式存储数据通道在最后,是TensorFlow的默认格式。...每个接受域按列堆叠,得到特征映射变换矩阵。同时还将滤波器矩阵逐行平摊和叠加,形成滤波器变换矩阵。滤波变换和特征映射变换矩阵经过矩阵乘法运算,形成扁平化的输出矩阵。...在上面的隐式GEMM中,每个矩阵乘法可以分成更小的矩阵乘法或块。然后每个块都由SMs同时处理,以加快过程。 有了上面的计算过程,还需要存储张量,下面我们看看张量是如何在GPU中存储的。...张量通常以跨行格式存储在GPU中,其中元素在内存布局中以非连续的方式存储。这种跨行存储方法提供了以各种模式(如NCHW或NHWC格式)排列张量的灵活性,优化了内存访问和计算效率。...下图中所示的给定张量,我们可以用NCHW和NHWC的行主格式表示它们,行主存储通过顺序存储每一行来安排内存中的张量元素。 NCHW 这里W是最动态的维度。

    1.6K50

    Linux:如何在脚本开发中实现程序在用户退出后仍保持运行

    /my_script.sh > my_script.log 2>&1 & 使用disown命令 disown命令可以将一个已经在后台运行的作业从当前的Shell作业列表中移除,这样在用户退出时,该作业也不会被发送.../my_script.sh & disown 使用setsid命令 setsid命令可以创建一个新的会话并将程序置于该会话中,确保程序与当前终端脱离关系。 sh setsid ..../my_script.sh & 使用tmux或screen工具 tmux和screen是两个流行的终端复用工具,它们可以创建一个持久的会话,在会话中运行的程序不会因为用户退出而终止。...它的主要优点包括: 会话管理:tmux 可以创建、分离和重新连接会话,使得程序可以在不同的会话中独立运行而不会因为终端关闭而中断。...此外,tmux 的窗口分割和脚本友好性,使得它在现代开发和运维场景中更加实用。学习和掌握tmux将为您的日常工作和长期任务管理提供极大的便利。

    45710

    神经网络入手学习

    ,featuers)的序列数据;2D卷积层通常处理存储在4D张量中的图片数据。...在Keras框架中通过把相互兼容的网络层堆叠形成数据处理过程,而网络层的兼容性是指该网络层接收特定形状的输入张量同时返回特东形状的输出张量。...网络模型:网络层堆叠而成 一个神经网络模型是网络层的非循环连接而成。最常见的是网络层的线性连接堆叠,讲一个输入张量转换为一个输出张量。...通过选择网络模型的拓扑结构,限制了假设空间能进行的张量操作,通过这些张量操作有输出张量得到对应的输出张量;之后寻找这些张量操作中涉及到的权重系数张量。...对于常见的问题,如:分类、回归、序列预测,有对应的指导-选择正确的损失函数。

    1.1K20

    【DB笔试面试511】如何在Oracle中写操作系统文件,如写日志?

    题目部分 如何在Oracle中写操作系统文件,如写日志? 答案部分 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。...image.png 其它常见问题如下表所示: 问题 答案 Oracle中哪个包可以获取环境变量的值? 可以通过DBMS_SYSTEM.GET_ENV来获取环境变量的当前生效值。...在CLIENT_INFO列中存放程序的客户端信息;MODULE列存放主程序名,如包的名称;ACTION列存放程序包中的过程名。该包不仅提供了设置这些列值的过程,还提供了返回这些列值的过程。...如何在存储过程中暂停指定时间? DBMS_LOCK包的SLEEP过程。例如:“DBMS_LOCK.SLEEP(5);”表示暂停5秒。 DBMS_OUTPUT提示缓冲区不够,怎么增加?...如何在Oracle中写操作系统文件,如写日志? 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。

    28.8K30

    在PyTorch中构建高效的自定义数据集

    好吧,事实证明,DataLoader以系统的方式加载数据,以便我们垂直而非水平来堆叠数据。这对于一个batch的张量(tensor)流动特别有用,因为张量垂直堆叠(即在第一维上)构成batch。...通常来说,DataLoader尝试将一批一维张量堆叠为二维张量,将一批二维张量堆叠为三维张量,依此类推。...您可以想象如何在计算机视觉训练场景中使用该数据集。数据集将具有文件名列表和图像目录的路径,从而让__getitem__函数仅读取图像文件并将它们及时转换为张量来进行训练。...堆叠种族张量,独热编码形式表示该张量是十个种族中的某一个种族 堆叠性别张量,独热编码形式表示数据集中存在两种性别中的某一种性别 堆叠名称张量,最后一个维度应该是charset的长度,第二个维度是名称长度...数据拆分实用程序 所有这些功能都内置在PyTorch中,真是太棒了。现在可能出现的问题是,如何制作验证甚至测试集,以及如何在不扰乱代码库并尽可能保持DRY的情况下执行验证或测试。

    3.6K20

    边缘智能:嵌入式系统中的神经网络应用开发实战

    神经网络在嵌入式系统中的应用神经网络在嵌入式系统中的应用广泛,包括但不限于以下领域:1. 图像识别神经网络在边缘设备上用于图像识别,如智能摄像头、自动驾驶汽车和无人机。...以下是一些简单的代码案例,演示了如何在嵌入式系统上使用TensorFlow Lite来运行神经网络模型。4....TensorFlow Lite 语音识别示例以下示例演示了如何在嵌入式系统上使用TensorFlow Lite进行语音识别。需要一个TensorFlow Lite模型,该模型用于识别语音。...TensorFlow Lite 视觉感知示例以下示例演示了如何在嵌入式系统上使用TensorFlow Lite进行视觉感知任务,例如人体姿态估计。...模型加载到TVM Relay中,然后使用TVM编译为目标特定的运行时库。

    1.3K10
    领券