首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

原 荐 SparkSQL简介及入门

但是,随着Spark的发展,对于野心勃勃的Spark团队来说,Shark对于hive的太多依赖(如采用hive的语法解析器、查询优化器等等),制约了Spark的One Stack rule them all...2)在应用程序中可以混合使用不同来源的数据,如可以将来自HiveQL的数据和来自SQL的数据进行Join操作。     ...显然这种内存存储方式对于基于内存计算的spark来说,很昂贵也负担不起) 2、SparkSql的存储方式     对于内存列存储来说,将所有原生数据类型的列采用原生数组来存储,将Hive支持的复杂数据类型...(如array、map等)先序化后并接成一个字节数组来存储。     ...此外,基于列存储,每列数据都是同质的,所以可以数据类型转换的CPU消耗。此外,可以采用高效的压缩算法来压缩,是的数据更少。

2.5K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SparkSQL极简入门

    但是,随着Spark的发展,对于野心勃勃的Spark团队来说,Shark对于hive的太多依赖(如采用hive的语法解析器、查询优化器等等),制约了Spark的One Stack rule them all...2)在应用程序中可以混合使用不同来源的数据,如可以将来自HiveQL的数据和来自SQL的数据进行Join操作。 3)内嵌了查询优化框架,在把SQL解析成逻辑执行计划之后,最后变成RDD的计算。...显然这种内存存储方式对于基于内存计算的spark来说,很昂贵也负担不起) 2、SparkSql的存储方式 对于内存列存储来说,将所有原生数据类型的列采用原生数组来存储,将Hive支持的复杂数据类型(如array...此外,基于列存储,每列数据都是同质的,所以可以数据类型转换的CPU消耗。此外,可以采用高效的压缩算法来压缩,是的数据更少。...2)列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题。 3) 两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。

    3.9K10

    2021年大数据Spark(二十四):SparkSQL数据抽象

    DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...而中间的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。...方式一:下标获取,从0开始,类似数组下标获取如何获取Row中每个字段的值呢????...[Person]); 基于上述的两点,从Spark 1.6开始出现Dataset,至Spark 2.0中将DataFrame与Dataset合并,其中DataFrame为Dataset特殊类型,类型为...由于DataFrame每一行的数据结构一样,且存在schema中,Spark通过schema就能读懂数据,因此在通信和IO时只需要序列化和反序列化数据,而结构部分不用。

    1.2K10

    Spark SQL 数据统计 Scala 开发小结

    1、RDD Dataset 和 DataFrame 速览 RDD 和 DataFrame 都是一个可以看成有很多行,每一行有若干列的数据集(姑且先按照记录和字段的概念来理解) 在 scala 中可以这样表示一个...DataFrame 则是一个每列有命名的数据集,类似于关系数据库中的表,读取某一列数据的时候可以通过列名读取。所以相对于 RDD,DataFrame 提供了更详细的数据的结构信息 schema。...一个 RDD[Sting], 每一行是一个字符串,需要用户自己去分割读取 2.2 转换操作 1、选择指定列 //查看表的 Schema tdwDataFrame.printSchema()...最开始的想法是用 scala 的 一些列表类型封装数据,当每个列的类型相同的时候,用数组 如 Array[String],但一般情况下是不同的,就用元组("a", 1, …),但这个方法有个局限,我们以...NaN,如果数据中存在 NaN(不是 null ),那么一些统计函数算出来的数据就会变成 NaN,如 avg。

    9.6K1916

    DataFrame的真正含义正在被杀死,什么才是真正的DataFrame?

    丰富的 API DataFrame 的 API 非常丰富,横跨关系(如 filter、join)、线性代数(如 transpose、dot)以及类似电子表格(如 pivot)的操作。...DataFrame 正式下定义: DataFrame 由二维混合类型的数组、行标签、列标签、以及类型(types 或者 domains)组成。...在每列上,这个类型是可选的,可以在运行时推断。从行上看,可以把 DataFrame 看做行标签到行的映射,且行之间保证顺序;从列上看,可以看做列类型到列标签到列的映射,同样,列间同样保证顺序。...试想,对于关系系统来说,恐怕需要想办法找一列作为 join 的条件,然后再做减法等等。最后,对于空数据,我们还可以填充上一行(ffill)或者下一行的数据(bfill)。...图里的示例中,一个行数 380、列数 370 的 DataFrame,被 Mars 分成 3x3 一共 9 个 chunk,根据计算在 CPU 还是 NVIDIA GPU 上进行,用 pandas DataFrame

    2.5K30

    XGBoost缺失值引发的问题及其深度分析

    背景 XGBoost模型作为机器学习中的一大“杀器”,被广泛应用于数据科学竞赛和工业领域,XGBoost官方也提供了可运行于各种平台和环境的对应代码,如适用于Spark分布式训练的XGBoost on...从该同学给出的测试代码上,并没有发现什么问题: //测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667...//测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667, 31.14, 29.28, 0, 1.303333...SparseVector作为Spark ML中的数组的保存格式,被所有的算法组件使用,包括XGBoost on Spark。...重点来了,Spark ML中对Vector类型的存储是有优化的,它会自动根据Vector数组中的内容选择是存储为SparseVector,还是DenseVector。

    89020

    XGBoost缺失值引发的问题及其深度分析

    背景 XGBoost模型作为机器学习中的一大“杀器”,被广泛应用于数据科学竞赛和工业领域,XGBoost官方也提供了可运行于各种平台和环境的对应代码,如适用于Spark分布式训练的XGBoost on...从该同学给出的测试代码上,并没有发现什么问题: //测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667...//测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667, 31.14, 29.28, 0, 1.303333...SparseVector作为Spark ML中的数组的保存格式,被所有的算法组件使用,包括XGBoost on Spark。...重点来了,Spark ML中对Vector类型的存储是有优化的,它会自动根据Vector数组中的内容选择是存储为SparseVector,还是DenseVector。

    85430

    XGBoost缺失值引发的问题及其深度分析

    背景 XGBoost模型作为机器学习中的一大“杀器”,被广泛应用于数据科学竞赛和工业领域,XGBoost官方也提供了可运行于各种平台和环境的对应代码,如适用于Spark分布式训练的XGBoost on...从该同学给出的测试代码上,并没有发现什么问题: //测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667...//测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667, 31.14, 29.28, 0, 1.303333...SparseVector作为Spark ML中的数组的保存格式,被所有的算法组件使用,包括XGBoost on Spark。...重点来了,Spark ML中对Vector类型的存储是有优化的,它会自动根据Vector数组中的内容选择是存储为SparseVector,还是DenseVector。

    1.4K30

    XGBoost缺失值引发的问题及其深度分析

    背景 XGBoost模型作为机器学习中的一大“杀器”,被广泛应用于数据科学竞赛和工业领域,XGBoost官方也提供了可运行于各种平台和环境的对应代码,如适用于Spark分布式训练的XGBoost on...从该同学给出的测试代码上,并没有发现什么问题: //测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667...//测试结果中的一行,41列 double[] input = new double[]{1, 2, 5, 0, 0, 6.666666666666667, 31.14, 29.28, 0, 1.303333...SparseVector作为Spark ML中的数组的保存格式,被所有的算法组件使用,包括XGBoost on Spark。...重点来了,Spark ML中对Vector类型的存储是有优化的,它会自动根据Vector数组中的内容选择是存储为SparseVector,还是DenseVector。

    1.4K30

    Spark与Hadoop的区别是什么?请举例说明。

    Spark提供了丰富的高级API,如Spark SQL、Spark Streaming和MLlib等,使得用户可以使用Java、Scala、Python和R等常用编程语言进行开发。...HDFS用于存储大规模数据集,并提供了高容错性和高吞吐量的数据访问能力。MapReduce是一种将计算任务分解为多个并行子任务的编程模型,适用于批处理任务。...API和编程语言支持:Spark提供了丰富的高级API,如Spark SQL、Spark Streaming和MLlib等,支持多种编程语言,如Java、Scala、Python和R等。...下面是一个使用Spark和Hadoop的具体案例,用于计算一个文本文件中单词的词频统计: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD...然后,我们创建了一个JavaSparkContext对象,作为与Spark集群的连接。接下来,我们使用textFile方法从HDFS中读取一个文本文件,并将每一行切分成单词。

    9910

    第三天:SparkSQL

    DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...Row,每一列值无法直接访问,只有通过解析才可以获得各个字段。...DataFrame也可以叫DataSet[Row],每一行类型都是Row,不解析每一行究竟有那些字段,每个字段又是什么类型无从得知,只能通上面提到的getAs方法或者共性的第七条的模式匹配来拿出特定的字段...,而DataSet中每一行是什么类型是不一定的,在自定义了case class 之后可以自由获得每一行信息。...目的:Spark读写Json数据,其中数据源可以在本地也可以在HDFS文件系统注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。

    13.2K10

    在Apache Spark上跑Logistic Regression算法

    虽然Spark支持同时Java,Scala,Python和R,在本教程中我们将使用Scala作为编程语言。不用担心你没有使用Scala的经验。练习中的每个代码段,我们都会详细解释一遍。...对于data变量中的每一行数据,我们将做以下操作: 使用“,”拆分字符串,并获得一个向量,命名为parts 创建并返回一个LabeledPoint对象。...每个LabeledPoint包含标签和值的向量。在我们的训练数据,标签或类别(破产或非破产)放在最后一列,数组下标0到6。这是我们使用的parts(6)。...我们来看看我们准备好的数据,使用take(): parsedData.take(10) 上面的代码,告诉Spark从parsedData数组中取出10个样本,并打印到控制台。...Spark可以用于机器学习的任务,如logistic regression。

    1.5K30

    在Apache Spark上跑Logistic Regression算法

    虽然Spark支持同时Java,Scala,Python和R,在本教程中我们将使用Scala作为编程语言。不用担心你没有使用Scala的经验。练习中的每个代码段,我们都会详细解释一遍。...对于data变量中的每一行数据,我们将做以下操作: 使用“,”拆分字符串,并获得一个向量,命名为parts 创建并返回一个LabeledPoint对象。每个LabeledPoint包含标签和值的向量。...在我们的训练数据,标签或类别(破产或非破产)放在最后一列,数组下标0到6。这是我们使用的parts(6)。在保存标签之前,我们将用getDoubleValue()函数将字符串转换为Double型。...我们来看看我们准备好的数据,使用take(): parsedData.take(10) 上面的代码,告诉Spark从parsedData数组中取出10个样本,并打印到控制台。...Spark可以用于机器学习的任务,如logistic regression。

    1.4K60

    简单回答:SparkSQL数据抽象和SparkSQL底层执行过程

    DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 ?...而中间的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。...DataFrame有如下特性: 1)分布式的数据集,并且以列的方式组合的,相当于具有schema的RDD; 2)相当于关系型数据库中的表,但是底层有优化; 3)提供了一些抽象的操作,如select、filter...基于上述的两点,从Spark 1.6开始出现Dataset,至Spark 2.0中将DataFrame与Dataset合并,其中DataFrame为Dataset特殊类型,类型为Row。 ?...由于DataFrame每一行的数据结构一样,且存在schema中,Spark通过schema就能读懂数据,因此在通信和IO时只需要序列化和反序列化数据,而结构部分不用。

    1.9K30

    大数据技术Spark学习

    而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame 多了数据的结构信息,即 schema。...DataSet: DataSet 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。...DataFrame 也可以叫 Dataset[Row],即每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段...而 DataSet 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息。...注意:这个 JSON 文件不是一个传统的 JSON 文件,每一行都得是一个 JSON 串。

    5.3K60

    SparkR:数据科学家的新利器

    目前社区正在讨论是否开放RDD API的部分子集,以及如何在RDD API的基础上构建一个更符合R用户习惯的高层API。...Scala API 中RDD的每个分区的数据由iterator来表示和访问,而在SparkR RDD中,每个分区的数据用一个list来表示,应用到分区的转换操作,如mapPartitions(),接收到的分区数据是一个...假设rdd为一个RDD对象,在Java/Scala API中,调用rdd的map()方法的形式为:rdd.map(…),而在SparkR中,调用的形式为:map(rdd, …)。...SparkR RDD API的执行依赖于Spark Core但运行在JVM上的Spark Core既无法识别R对象的类型和格式,又不能执行R的函数,因此如何在Spark的分布式计算核心的基础上实现SparkR...R worker进程反序列化接收到的分区数据和R函数,将R函数应到到分区数据上,再把结果数据序列化成字节数组传回JVM端。

    4.1K20

    Spark入门基础深度解析图解

    1、Scala解析   Ⅰ、Scala解析器   Scala解析器会快速编译Scala代码为字节码然后交给JVM运行; REPL -> Read(取值) -> Evaluation(求值) -> Print...(打印) -> Lap(循环)   Ⅱ、默认情况下Scala不需要语句终结符,会默认将每一行作为一个语句,如果一行要写多条语句则必须要使用语句终结符 – " ;",也可以用块表达式包含多条语句,最后一条语句的值就是这个块表达式的运算结果...2、Spark体系概览 – Spark的地位图解 ? 3、Spark vs MapReduce的计算模型图解   Spark相对于Hadoop最大的不同在于迭代式计算模型; ?...4、Spark SQL和Hive的关系图解 ? 5、Spark Streaming和Storm的计算模型对比图解 ? 6、Wordcount程序原理深度剖析图解 ?...  Ⅰ、Spark自定义二次排序: 需要Javabean实现Ordered 和 Serializable接口,然后在自定义的JavaBean里面定义需要进行排序的列, 并为列属性提供构造方法

    52720
    领券