首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

这种两个Colorbar的图形怎么绘制?这样做真的超简单...

「绘图技巧」 :如何在同一个图形上显示两个colorbar 今天我们的学员交流群里有人咨询: 如何在一个图形中同时显示两个Colorbar?特别是在绘制地图的时候。...其实,这个技巧在我们课程新增的案例里就有类似的内容,今天就Python语言中Matplotlib工具,简单给大家介绍下,同时绘制两个colorbar的绘图技巧 Matplotlib 两个Colorbar...位置部分 这一个操作一般都是使用Matplotlib中画布对象fig的*add_axes()*, 该函数的主要作用是Matplotlib中用于在图形(Figure)上添加新的坐标轴(Axes)的方法之一...可视化学习圈子是书籍「科研论文配图绘制指南-基于Python」一书的学习圈子:主要通过以下几个方面,给大家带来比纸质书籍更丰富的学习内容: 视频教学,和读者零距离互动交流 及时修正勘误和定期新增绘制知识点...不用ArcGIS,我照样可以画出惊艳的地图... 比Matplotlib合并子图更方便!patchworklib让我告别PS拼图... Xarray,不用ArcGIS,所有地理空间绘图全搞定...

32010

Python数据分析-数据探索下

(一般分为完全正线性相关、完全负线性相关、非线性相关、正线性相关、负线性相关、不相关) (2)绘制散点图矩阵 可对多个变量同时进行相关关系的考察 (3)计算相关系数 这里的相关系数有很多,如Pearson...相关系数、spearman相关系数、判定系数等等 三、python主要数据探索函数 python中用于数据探索的库主要是pandas和matplotlib,而pandas提供大量的函数,也作为重点来进行介绍...统计作图函数 (1)plot(),绘制线性二维图,matplotlib/pandas 使用格式:plt.plot(x,y,S) 字符串S指定绘制图形的类型、样式和颜色,常用的有:‘b’为蓝色、‘r’为红色...、‘g’为绿色、‘o’为圆圈、‘+’为加号标记、‘-’为实线、‘--’为虚线 (2)pie(),绘制饼形图,matplotlib/pandas (3)hist(),绘制二维条形直方图,matplotlib.../pandas (4)boxplot(),绘制样本数据的箱形图,pandas (5)plot(logy=true),绘制y轴的对数图形,pandas (6)plot(yerr=error),绘制误差条形图

1.3K90
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python数据科学系列:matplotlib入门详细教程

    的替代包名,那么也该是pylab而不是pyplot 简单地讲,以后也不用import numpy 和 import matplotlib.pyplot了,直接import matplotlib.pylab...除此之外,plt.axes也可通过接收尺寸参数实现多子图绘制:在添加子图时传入一个含有4个数值的元组,分别表示子图的底坐标和左坐标(设置子图原点位置)、宽度和高度(设置子图大小),从而间接实现子图仅占据画板的一块子区域...应用plt.axes绘制多子图 通过axes绘制多子图,应对简单需求尚可,但面对复杂图表绘制时难免过于繁琐:需要手工计算各子图的原点位置和大小,意味着可能需要多次尝试。...应用plt.GridSpec实现复杂多子图绘制 05 自定义配置 实际上,前述在配置图例过程中,每次绘制都需要进行大量自定义代码设置(这也是matplotlib的一个短板),在少量绘图工作时尚可接受,但在大量相似绘图存在重复操作时...seaborn,是对matplotlib的高级封装,具有更为美观的图形样式和颜色配置,并提供了常用的统计图形接口,如pairplot()适用于表达多组数据间的关系 ggplot,也是对matplotlib

    2.7K22

    8个流行的Python可视化工具包

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。...Pyecharts绘制可视化地图专辑 Python 绘制惊艳的瀑布图 使用日历热图进行时序数据可视化 用 GeoPandas 绘制超高颜值数据地图 一行 Python 代码轻松构建树状热力图 这种

    62120

    Matplotlib的详细使用及原理

    认识matplotlib Matplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表。...用来容纳所有绘图元素 Axes:容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成 Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素 Tick...add_subplot()函数接受一个参数,表示子图的位置。# # 在这里,参数111表示将子图放置在图形对象的中心位置。...库中的一个方法,用于在图形中添加子图。...这个方法通常与 pyplot.figure() 一起使用,以创建一个新的图形对象并添加子图。 此外还可以绘制误差折线图等各种图形。

    16710

    Python:matplotlib

    原文链接:http://blog.csdn.net/ywjun0919/article/details/8692018 来源于书籍:《Python科学计算》 matplotlib 是Python最著名的绘图库...而 Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。...因为matplotlib实际上是一套面向对象的绘图库,因此也可以直接获取对象的属性 配置文件 绘制一幅图需要对许多对象的属性进行配置,例如颜色、字体、线型等等。...绘制多子图(快速绘图) Matplotlib 里的常用类的包含关系为 Figure -> Axes -> (Line2D, Text, etc.)一个Figure对象可以包含多个子图(Axes),在matplotlib...中用Axes对象表示一个绘图区域,可以理解为子图。

    1.3K80

    教程 | 如何优雅而高效地使用Matplotlib实现数据可视化

    有很多不同的选项,如何选择正确的选项是一个挑战。例如,两年前这篇文章《Overview of Python Visualization Tools》仍然吸引了大量读者。...我坚定地认为 Matplotlib 是 Python 数据科学包必不可少的一部分,希望这篇文章可以帮助大家了解如何使用 Matplotlib 进行 Python 可视化。...此外,很多高级 Python 包,如 seaborn 和 ggplot 依赖于 Matplotlib 构建,因此理解了基础,学习更强大的框架才更加容易。...开始 下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。...现在数据以简单的表格形式呈现,我们再来看一下如何将数据绘制成条形图。如前所述,Matplotlib 具备多种不同风格,可用于渲染图表。

    2.5K20

    教程 | 如何优雅而高效地使用Matplotlib实现数据可视化

    有很多不同的选项,如何选择正确的选项是一个挑战。例如,两年前这篇文章《Overview of Python Visualization Tools》仍然吸引了大量读者。...我坚定地认为 Matplotlib 是 Python 数据科学包必不可少的一部分,希望这篇文章可以帮助大家了解如何使用 Matplotlib 进行 Python 可视化。...此外,很多高级 Python 包,如 seaborn 和 ggplot 依赖于 Matplotlib 构建,因此理解了基础,学习更强大的框架才更加容易。...开始 下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。...现在数据以简单的表格形式呈现,我们再来看一下如何将数据绘制成条形图。如前所述,Matplotlib 具备多种不同风格,可用于渲染图表。

    2.6K50

    【5分钟玩转Lighthouse】Python绘制图表

    本文将讲解如何在Lighthouse等云服务器上通过display、Python、Matplotlib等工具查看和绘制各类图表。...0x00 背景概述 工程师小王最近在折腾些性能统计分析的工作,所有的数据记录都在云服务器端,他很好奇如何在服务器端画图表并且方便地实时查看呢?...0x03 安装Matplotlib Matplotlib简介 Matplotlib,是用于绘制各种图表(包括静态图、动图、甚至交互图)的Python库。...比较常用的折线图、条形图、直方图、散点图,函数曲线图、饼图甚至3D图都可以用它来绘制。Matplotlib最开始诞生于2012年,并开源(BSD协议),支持Python2和Python3。...并且我们的三个子图对齐y轴(通过sharey参数),且x轴定义域相同,可以更加直观地比较不同初相位和阻尼所带来地影响,程序运行后,会直接弹出绘图窗口,显示绘制结果: m2-1603423011210.

    10.1K4617

    动态数据可视化—使用Python的Matplotlib库创建动态图表的技巧与实践

    在数据可视化领域,Matplotlib库是Python中最流行和功能强大的工具之一。它能够生成各种静态图表,如散点图、折线图和柱状图等。...和 values,然后创建了一个动态柱状图,使用 plt.ion() 打开了交互模式,接着通过 plt.subplots() 创建了一个图形窗口和一个子图,然后通过 ax.bar() 绘制了初始的柱状图...总结本文介绍了如何使用Python的Matplotlib库创建动态图表,并提供了几种常见类型的动态图表示例,包括折线图、散点图、柱状图、饼图和热力图。...通过这些示例,我们学习了如何在Matplotlib中打开交互模式,创建图形窗口和子图,以及如何通过循环更新图表的数据,从而实现动态效果。...在创建动态图表时,关键的步骤包括:打开Matplotlib的交互模式,以便实时更新图表。创建图形窗口和子图,选择合适的图表类型。初始化数据,并绘制初始图表。通过循环更新数据,并调用相应的方法更新图表。

    74710

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。

    2.1K30

    8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? ▲用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。

    2.6K40

    这里有8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。

    2.2K30

    8个流行的Python可视化工具包,你喜欢哪个?

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。

    2.2K20

    Python爬虫技术与数据可视化:Numpy、pandas、Matplotlib的黄金组合

    前言在当今信息爆炸的时代,数据已成为企业决策和发展的关键。而互联网作为信息的主要来源,网页中蕴含着大量的数据等待被挖掘。...2.1 Numpy库Numpy库是Python中用于科学计算的核心库之一,它提供了高效的数组操作功能,可以帮助我们进行各种数值计算。...3.1 Matplotlib库Matplotlib库是Python中用于绘制图表的经典库之一,它提供了丰富的绘图功能,可以绘制各种类型的图表,比如折线图、柱状图、散点图等。...import matplotlib.pyplot as plt# 绘制柱状图plt.figure(figsize=(10, 6))plt.bar(df['name'], df['price'], color...()通过上述代码,我们可以绘制出新能源汽车价格分布图,直观地展示不同车型的价格情况。

    61810

    8个好看又实用 Python可视化工具包,再也不怕做不出图表了!

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。...图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。

    4.8K00

    这里有 8 个流行的 Python 可视化工具包,你喜欢哪个?

    Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你最好不要为了使用较低级的绘图包而降低 Pandas 的版本。...9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。 我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 ? 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。

    1.7K40

    3小时入门numpy,pandas,matplotlib

    使用Python中的三个库可以优雅地进行数据分析,得到一只野生的Matlab,这三个库是numpy,pandas 和 matplotlib。...以numpy为基础的pandas中的数据框dataframe集数据分析工具万象于一身,可以像array数组一样进行复杂计算,又可以像excel一样地操作数据,又可以像SQL一样地操作数据。...而matplotlib进一步以matlab风格实现了绘图功能。其强大的数据可视化能力可以让你的数据分析结果颜值倾城。...而面向对象绘图方式一般自上而下完成,先创建figure,然后再创建子图ax,然后绘制data,最后设计各种辅助元素 (包括 xaxis, yaxis, title, grid,legend, annotate...2,条形图 ? 3,柱形分布图 ? 4,散点图 ? 5,饼图 ? 6,绘制子图 ? ?

    1.2K42
    领券