在Python/pandas中获得证据权重(WOE)和信息价值(IV)的权重,可以通过以下步骤实现:
import pandas as pd
import numpy as np
from sklearn.utils import resample
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
# 假设数据集为df,其中包含特征列'feature'和目标列'target'
df = pd.read_csv('your_dataset.csv')
# 将目标列转换为数值型
le = LabelEncoder()
df['target'] = le.fit_transform(df['target'])
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['feature'], df['target'], test_size=0.2, random_state=42)
def calculate_woe_iv(feature, target):
df = pd.DataFrame({'feature': feature, 'target': target})
df['non_target'] = 1 - df['target']
total_target = df['target'].sum()
total_non_target = df['non_target'].sum()
df['target_pct'] = df['target'] / total_target
df['non_target_pct'] = df['non_target'] / total_non_target
df['woe'] = np.log(df['target_pct'] / df['non_target_pct'])
df['iv'] = (df['target_pct'] - df['non_target_pct']) * df['woe']
iv = df['iv'].sum()
return df['woe'], iv
woe, iv = calculate_woe_iv(X_train, y_train)
需要注意的是,上述代码仅提供了计算WOE和IV的基本方法,实际应用中可能需要根据具体情况进行适当的调整和优化。此外,腾讯云并没有直接相关的产品或服务与WOE和IV的计算相关联,因此无法提供相关产品和链接地址。
领取专属 10元无门槛券
手把手带您无忧上云