在MATLAB中,将彩色图像转换为灰度图像的方法非常简单。只需使用rgb2gray函数即可。以下是详细步骤:
rgb2gray
imread
my_image.jpg
imshow
数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。以下是数字图像处理技术的主要特征和关键概念:
matlab——imadjust函数作用: 对进行图像的灰度变换,即调节灰度图像的亮度或彩色图像的颜色矩阵
将一个 100×100 的灰度值数组写入当前文件夹中的 PNG 文件。
通过采用图像处理技术,可以将数码设备采 集到的文字、图片等信息转化成其他信息形势输出,例如转化成音频输出己解决视 障患者的视力需求。但是,由于输入设备或某些其他因素不可避免地使得采集到的 文本图像或多或少会出现某种程度的倾斜。因此,倾斜图像校正是当前文本图像研 宄领域中十分重要的课题,尤其在数字化、自动化领域。比如,提高OCR(Optical Character Recognition)识别率从而提高文档自动化处理效率,车牌号码自动 识别与交通监视,手写体自动识别,名片自动归类等。
http://blog.csdn.net/baimafujinji/article/details/50614332
[1] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. 2003. Digital Image Processing Using MATLAB. Prentice-Hall, Inc., USA.
人类所接受的信息中,视觉信息占比大于60%,听觉信息占20%,其余信息占比小于20%,所以真的“百闻不如一见”!一般将视觉信息称为图像信息,其特点是直观形象,易懂,信息量大。
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。
数字图像处理(Digital Image Processing)又称为计算机图像处理(Computer Image Processing),旨在将图像信号转换成数字信号并利用计算机对其进行处理的过程。其运用领域如下图所示,涉及通信、生物医学、物理化学、经济等。
低照度图像增强《An Integrated Neighborhood Dependent Approach for Nonlinear Enhancement of Color Images》-LiTao 2004
在本文中,随着多媒体技术的不断发展,数码相机,高清拍照手机等多媒体设备己经在人们的生活中占据了越来越重要的地位 ( 点击文末“阅读原文”获取完整代码数据******** ) 。
伪彩色增强是把灰度图像中不同灰度值的区域赋予不同的颜色,简单来说,就是给一个黑白图像“上色”的过程。很多灰度图像因为自身色彩原因,在人眼的判别中不是十分方便,所以要对一些灰度图像进行伪彩色增强。增强后的灰度图像颜色种类越多,人眼能够识别的信息也越多。今天就给大家分享两种伪彩色合成的方法和代码。
waitKey函数既是opencv里常用又非常基础的函数,是刚开始学习opencv,还是使用opencv进行开发调试,都是waitKey函数的例子。然而最基础的东西可能容易看出忽略,在此可以忽略可以很好地了解这个基础又常用的waitKey函数。
计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种:
也可以将一个图像写入当前目录下: l1=imread(‘E:\a_matlab_file\picture***.jpg’); img=rgb2gray(l1); imshow(img); imwrite(img,‘gray.jpg’);
matlab中读取图片后保存的数据是uint8类型(8位无符号整数,即1个字节),以此方式存储的图像称作8位图像,相比较matlab默认数据类型双精度浮点double(64位,8个字节)可以节省存储空间。详细来说imread把灰度图像存入一个8位矩阵,当为RGB图像时,就存入8位RGB矩阵中。例如,彩色图像像素大小是400*300( 高 * 宽 ),则保存的数据矩阵为400*300*3,其中每个颜色通道值是处于0~255之间。虽然matlab中读入图像的数据类型是uint8,但图像矩阵运算时的数据类型是double类型。这么做一是为了保证精度,二是如不转换,在对uint8进行加减时会溢出。做矩阵运算时,uint8类型的数组间可以相互运算,结果仍是uint8类型的;uint8类型数组不能和double型数组作运算。
一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间坐标,f在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
在本文中,随着多媒体技术的不断发展,数码相机,高清拍照手机等多媒体设备已经在人们的生活中占据了越来越重要的地位
由于现代工业生产中大部分的工件是彩色物件,而对于计算机来说彩色图片包含的信息太多,以至于对于计算机来说任务过于繁重。处理图像的时候,要分别对RGB三种分量进行处理,实际上RGB并不能反映图像的形态特征,只是从光学的原理上进行颜色的调配。因此选择一种合适的并且使用的灰度化算法作为预处理的方式对于工业生产和信息处理具有非常重大的意义。
一、imfinfo函数——查看图像文件信息,注意参数是文件路径和文件名,不是图像对应的矩阵。
\min \|\alpha\|_1 \quad \mathrm{s.t.} \; \Phi\alpha = s
引导图滤波器是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献《Guided Image Filtering》以及matlab源码:http://kaimingh
imadjust是一个计算机函数,该函数用于调节灰度图像的亮度或彩色图像的颜色矩阵。在matlab的命令窗口中键入: doc imadjust或者help imadjust即可获得该函数的帮助信息, 键入type imadjust可以查看函数的源代码。
原文链接:http://blog.csdn.net/humanking7/article/details/46819527
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于 BSD 许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。相比于 PIL 库来说 OpenCV 更加强大, 可以做更多更复杂的应用,比如人脸识别等。
Hough是基于特征值提取技术的图像变换方案。Hough运用两个坐标空间的之间的变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点上形成峰值,从而把检测任意形状的问题转换为统计峰值问题。
在之前就有提到的老师叫做的大坑,可其实完全不知道该怎么写,这个系列不知道能做到哪里,东西做还是会做完,可是系列可能未来会坑掉。嘛,有一期是一期的东西,那么这个系列目前应该算是记录自己的学习轨迹和笔记了,全当放飞自我了_(:з)∠)_
灰度图 ,Gray Scale Image 或是Grey Scale Image,又称灰阶图。把白色与黑色之间按对数关系分为若干等级,称为灰度。8位像素灰度分为256阶。用灰度表示的图像称作灰度图。除了常见的卫星图像、航空照片外,许多地球物理观测数据也以灰度表示。除了常见的卫星图像、航空照片外,许多地球物理观测数据也以灰度表示。以位场图像为例,把位场表示为灰度图,需要将位场观测值灰度量化,即将场的变化范围转换成256阶的灰度范围。由于位场的动态变化范围非常大,磁场可达数万个纳特,重力场也可能在数百个重力单位内变化,所以在显示为图像前通常需要对位场观测值进行拉伸或压缩。
概述: 本文中小编将会跟大家分享一下OpenCV3.1.0中图像二值化算法OTSU的基本原理与源代码解析,最终还通过几行代码演示了一下如何使用OTSU算法API实现图像二值化。 一:基本原理 该方法是
灰度化:在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。一般常用的是加权平均法来获取每个像素点的灰度值。
本文介绍了MATLAB数字图像处理学习笔记,从基础知识、读取图像、显示图像、图像处理、数学形态学、图像分析、高斯模糊、图像复原、图像编码与压缩、图像的数值积分、图像处理算法、线性代数在图像处理中的应用、图像处理工具箱、图像处理实战、拓展技能等方面进行讲解。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
V={0,1,2}时,D4=无穷大,D8=无穷大,Dm=无穷大;V={2,3,4}时,D4=无穷大,D8=4,Dm=5。
1.基本概念 1. 图像分类 模拟图像:连续变化的函数 数字图像:离散的矩阵表示 二值图像:只有0、1 (黑、白) 灰度图像:像素取值是 0-255 ,有中间过度。 彩色(索引)图像:两个矩
伴随着人类社会历程的不断向前推进,先进的科技就一直承载着人类社会的进步,特别是近年来日渐成熟的AI技术,深远地改变了我们熟悉的各个领域。我们公众号时刻紧跟当前社会发展潮流,考虑到,图像处理技术作为人工智能领域中计算机视觉(CV)的重要基础知识,同时可能也是粉丝朋友们感兴趣的地方,为此,小编决定新开一个专栏——opencv图像处理,期待能够帮助更多想要学习AI技术的小伙伴们,当然,这些知识对于大学三四年级的同学也非常有用哦,期待能够带给大家更多的快乐,我们,一直在前行。
函数语法 A = imread(filename, fmt) [X, map] = imread(…)
根据文章内容总结摘要。
本机使用python 2.7.10下调试代码均通过,一下学习需要有一定的代码阅读能力,一下学习只介绍函数方法:
图像融合是综合两幅或者多幅图像的信息,以获取同一场景下更加准确、更加全面、更可靠的图像描述。图像融合可以克服单一图像在几何、光谱、和空间分辨率等方面存在的局限性。
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等。
在计算机视觉和图像处理领域,图像数据类型和颜色空间转换是非常重要的概念。Python 提供了强大的库和工具,用于读取、操作和转换图像数据。本文将深入探讨Python中的图像数据类型,以及如何进行常见的颜色空间转换。
众所周知,灰度图像是呈现黑色与白色之间不同级别颜色深度的图像,主要为亮度信息。而彩色图像的每个像素值包括了R、G、B 3个基色分量,每个分量决定了其基色的强度。因此,在图像融合时,不同图像采用不同的融合方法。本文对其分别进行了分析。
在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。
前段时间,答题 APP 如火如荼的发展,各大互联网公司都加入了撒币大战,包括像冲顶大会,百万英雄,芝士英雄等等。随之而来的也是各个答题应用辅助的兴起。
领取专属 10元无门槛券
手把手带您无忧上云