导语 Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。...相对于其他深度学习的框架,如Tensorflow、Theano、Caffe等,Keras在实际应用中有一些显著的优点,其中最主要的优点就是Keras已经高度模块化了,支持现有的常见模型(CNN、RNN等...一维卷积主要应用于以时间序列数据或文本 数据,二维卷积通常应用于图像数据。由于这三种的使用和参数都基本相同,所以主要以处理图像数据的Conv2D进行说明。...kernel_size:卷积核的大小。 strdes:步长,二维中默认为(1, 1),一维默认为1。...当我们要搭建多层神经网络(如深层LSTM时,若不是最后一层,则需要将该参数设为True。 (9) 嵌入层:该层只能用在模型的第一层,是将所有索引标号的稀疏矩阵映射到致密的低维矩阵。
准备数据 问题的确切表达如下:给定的数据可以追溯到 lookback 时间步长(一个时间步长为10分钟)并在每个steps 时间步长处进行采样 ,您可以预测该delay 时间步长中的温度 吗?...但是数据中的每个时间序列的度量尺度都不同(例如,温度通常在-20至+30之间,但以毫巴为单位的大气压约为1,000)。您将独立地标准化每个时间序列。...下面的清单显示了一个全连接的模型,该模型首先将数据展平,然后在两个密集层中运行它。请注意,最后一个致密层上缺少激活函数,这对于回归问题是很典型的。您将MAE用作损失函数。...您已经熟悉了应对这种现象的经典技术:丢弃(dropout),它随机将图层的输入单元清零,以便打破该图层所暴露的训练数据中的偶然相关性。但是,如何在循环网络中正确应用dropout并不是一个简单的问题。...2015年,Yarin Gal作为其博士学位论文的一部分 在贝叶斯深度学习中,确定了使用递归网络进行dropout的正确方法:应在每个时间步上应用相同的dropout模式,而不是随时间步长随机变化的dropout
《Keras快速上手:基于Python的深度学习实战》系统地讲解了深度学习的基本知识、建模过程和应用,并以深度学习在推荐系统、图像识别、自然语言处理、文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备...时间截止周五(8月11日)晚22点。 作者 | 谢梁 鲁颖 劳虹岚 从上面的介绍看到,在Keras中,定义神经网络的具体结构是通过组织不同的网络层(Layer)来实现的。...strides:卷积在宽或者高维度的步长。要求是整数或整数的列表,或者是元组。如果是单一整数,则应用于所有适用的维度。如果设定步长不为1,则dilation_rate选项的取值必须为1。...在介绍这些子类的用法之前,我们先来了解循环层的概念,这样在写Keras代码时方便在头脑中进行映射。循环网络和全连接网络最大的不同是以前的隐藏层状态信息要进入当前的网络输入中。...output_dim:输出维度,这是需要映射到致密的低维向量中的维度,为大于或等于0 的整数。
输出张量中的每个时间步t包含关于输入序列中的时间步长0到t的信息 - 关于整个过去。...准备数据 问题的确切表述如下:给定的数据可以追溯到回溯时间步长(时间步长为10分钟)并按步骤时间步长采样,能预测延迟时间步长的温度吗?...但是数据中的每个时间序列都有不同的取值范围(例如,温度通常介于-20和+30之间,但是以mbar为单位测量的大气压力大约为1,000)。 独立标准化每个时间序列,以便它们都以相似的比例获取小值。...: 用于对数据进行采样的时间段(以时间步长为单位)。...在2015年,Yarin Gal作为他关于贝叶斯深度学习的博士论文的一部分,确定了循环网络使用dropout的正确方法:应该在每个时间步应用相同的dropout mask(相同的丢弃单位模式),而不是从时间步长到时间步长随机变化的
本文约1700字,建议阅读5分钟本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 全文链接:http://tecdat.cn/?...时间 t 在 T=Z 的情况下可以是离散的,或者在 T=R 的情况下是连续的。为简化分析,我们将仅考虑离散时间序列。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...sps= laormhead(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1。 特征:对于单变量情况,如本例所示,特征 = 1。 批量大小必须是训练样本和测试样本大小的共同因素。
本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 ---- 简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察数据时的时间索引。...时间 t 在 T=Z 的情况下可以是离散的,或者在 T=R 的情况下是连续的。为简化分析,我们将仅考虑离散时间序列。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...sps= laorm head(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1 特征:对于单变量情况,如本例所示,特征 = 1 批量大小必须是训练样本和测试样本大小的共同因素。
CNN-LSTMs是为视觉时间序列预测问题和从图像序列(如视频)生成文本描述的应用而开发的。...将这种架构定义为两个子模型是很有帮助的:用于特征提取的CNN模型和用于跨时间步长解释特征的LSTM模型。...我们希望将CNN模型应用于每个输入图像,并将每个输入图像的输出作为单个时间步长传递给LSTM。 我们可以通过在TimeDistributed层中包装整个CNN输入模型(一层或多层)来实现这一点。...这一层实现了多次应用同一层或多个层的期望结果。在本例中,将其多次应用于多个输入时间步骤,并依次为LSTM模型提供一系列图像解释或图像特性。...在整个CNN模型周围使用TimeDistribted包装器,这意味着LSTM将看到50个时间步长,每个时间步长显示1152个元素向量作为输入。
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能 本文将演示如何在 R 中使用 LSTM 实现时间序列预测。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...sps= laorm head(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1 特征:对于单变量情况,如本例所示,特征 = 1 批量大小必须是训练样本和测试样本大小的共同因素。...LSTM 还需要在每个 epoch 之后重置网络状态。为了实现这一点,我们在 epoch 上运行一个循环,在每个 epoch 中我们拟合模型并通过参数 _reset_states()_重置状态。
该示例为用户开发自己的编解码LSTM模型提供了基础。 在本教程中,你将学会如何用Keras为序列预测问题开发复杂的编解码循环神经网络,包括: 如何在Keras中为序列预测定义一个复杂的编解码模型。...如何定义一个可用于评估编解码LSTM模型的可伸缩序列预测问题。 如何在Keras中应用编解码LSTM模型来解决可伸缩的整数序列预测问题。...该函数有3个参数: n_input:输入序列的基数,例如每个时间步长的特征、字或字符的个数。 n_output:输出序列的基数,例如每个时间步长的特征、字或字符的个数。...cardinality:输出序列的基数,例如每个时间步长的特征、单词或字符的数量。 该函数返回包含目标序列的列表。 可伸缩序列问题 在本章节中,我们将提出一个可伸缩的序列预测问题。...总结 在本教程中,你学会了如何用Keras为序列预测问题开发复杂的编解码循环神经网络,具体一点说,包括以下几个方面: 如何在Keras中为序列预测定义一个复杂的编解码模型。
TimeDistributed Layer(以前的_TimeDistributedDense_layer)被隐秘地地描述为一个layer装饰器,这是一个额外的复杂因素: 这个装饰器允许我们在输入的每个时间片上应用一个...例如,在问题“ 何时以及如何使用TimeDistributedDense ”中,fchollet(Keras的作者)解释道: TimeDistributedDense对3D张量的每个时间步应用相同的Dense...LSTM的输入必须是三维的。我们可以将2D序列重塑为具有1个样本、5个时间步长和1个特征的3D序列。我们将输出定义为具有5个特征的1个样本。...model.add(TimeDistributed(Dense(1))) 输出层中的单个输出值是关键。它强调我们打算从输入序列中的每个时间步中输出一个时间步。...通过要求少得多的权重来简化网络,使得一次只处理一个时间步。 一个更简单的完全连接层被应用到从前一层提供的序列中的每个时间步骤,以建立输出序列。
引言 随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方法,还依赖于网络架构本身。然而,手工设计一个适用于不同任务的高效架构需要大量的领域知识和实验。...NAS的三大组件 2.1 搜索空间 搜索空间定义了NAS可以探索的所有可能网络结构,通常包括以下元素: 层的类型(例如卷积层、池化层、全连接层) 层的超参数(如卷积核大小、步长、激活函数等) 网络拓扑结构...(如层之间的连接方式) 搜索空间设计的考虑因素: 大小:搜索空间过大会导致搜索难度增加,过小则可能限制模型的表现力。...直接训练每个架构并评估其性能是非常耗时的,因此一些加速方法被提出: 参数共享(Weight Sharing):不同架构共享部分模型权重,以减少重复训练。...Learning》中得到广泛应用。
在图中,5 × 7 的输入层(加上零填充),连接着一个3 × 4的层,使用 3 × 3 的感受野,步长是2(这个例子中,宽和高的步长都是2,但也可以不同)。...图14-5 应用两个不同的过滤器,得到两张不同的特征映射 堆叠多个特征映射 简单起见,前面都是将每个卷积层的输出用2D层来表示的,但真实的卷积层可能有多个过滤器(过滤器数量由你确定...在这个例子中,使用了一个2 × 2的池化核,步长为2,没有填充。只有感受野中的最大值才能进入下一层,其它的就丢弃了。...在构造器中,创建了所有需要的层:主要的层位于图中右侧,跳跃层位于左侧(只有当步长大于1时需要)。在call()方法中,我们让输入经过主层和跳跃层,然后将输出相加,再应用激活函数。...图14-27 使用转置卷积层做上采样 笔记:在转置卷积层中,步长定义为输入图片被拉伸的倍数,而不是过滤器步长。所以步长越大,输出也就越大(和卷积层或池化层不同)。
如何在pyTorch中加载数据:DataSet和Smart Batching 如何在pyTorch中实现Keras的权重初始化 首先,我们来看看torchMoji/DeepMoji的模型。...Keras和pyTorch中的关注层 模型的关注层是一个有趣的模块,我们可以分别在Keras和pyTorch的代码中进行比较: class Attention(Module): """...为了在GPU上并行计算这样一个批次,我们希望: 尽可能多地并行处理这个序列,因为LSTM隐藏状态依赖于每个序列的前一个时间步长,以及 以正确的时间步长(每个序列的结尾)停止每个序列的计算。...,每个令牌的维度),在这个简单的例子中有五个令牌序列(用整数表示):(18,1) 一个batch_sizes对象:每个时间步长的令牌数列表,在这个例子中为:[6,5,2,4,1] 用pack_padded_sequence...例如,在我们的NLP模型中,我们可以在对PackedSequence对象不解包的情况下连接两个LSTM模块的输出,并在此对象上应用LSTM。我们还可以在不解包的情况下执行关注层的一些操作。
来源:机器之心 本文长度为2527字,建议阅读5分钟 本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。...长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...我们将在第一个隐藏层中定义具有 50 个神经元的 LSTM,在输出层中定义 1 个用于预测污染的神经元。输入数据维度将是 1 个具有 8 个特征的时间步长。...请记住,每个批结束时,Keras 中的 LSTM 的内部状态都将重置,因此内部状态是天数的函数可能有所帮助(试着证明它)。
在每个时间步t(也称为一个帧),这个循环神经元接收输入x(t)以及它自己的前一时间步长 y(t-1) 的输出。 因为第一个时间步骤没有上一次的输出,所以是0。...图15-2 一层循环神经元(左),及其随时间展开(右) 每个循环神经元有两组权重:一组用于输入x(t),另一组用于前一时间步长 y(t-1) 的输出。 我们称这些权重向量为 wx 和 wy。...首先,当前的输入矢量 x(t) 和前一时刻的短时状态 h(t-1) 作为输入,传给四个不同的全连接层,这四个全连接层有不同的目的: 输出 g(t)的层是主要层。...如果1D卷积层的步长是1,填充为零,则输出序列的长度和输入序列相同。但如果使用"valid"填充,或大于1的步长,则输出序列会比输入序列短,所以一定要按照目标作出调整。...例如,下面的模型和之前的一样,除了开头是一个步长为2的1D卷积层,用因子2对输入序列降采样。核大小比步长大,所以所有输入会用来计算层的输出,所以模型可以学到保存有用的信息、丢弃不重要信息。
相关视频:LSTM 神经网络架构和工作原理及其在Python中的预测应用拓端,赞27LSTM神经网络架构和原理及其在Python中的预测应用在本文中,您将发现如何使用Keras深度学习库在Python中开发...使用窗口方法进行回归的LSTM我们还可以使用多个最近的时间步长来预测下一个时间步长。这称为窗口,窗口的大小是可以针对每个问题进行调整的参数。...LSTM随时间步长回归你可以看到LSTM网络的数据准备包括时间步长。某些序列问题每个样本的时间步长可能不同。时间步长为表达我们的时间序列问题提供了另一种方法。...最后,在构造LSTM层时, 必须将有状态参数设置为 True ,我们对批处理中的样本数量,样本中的时间步长以及一次中的特征数量进行编码。通过设置 batch_input_shape 参数。...所需配置的一个附加函数是,每个后续层之前的LSTM层必须返回序列。这可以通过将return_sequences参数设置 为 True来完成。
CNN在图像处理和视频处理领域有着广泛的应用。在这篇文章中,我将详细介绍卷积神经网络是如何进化的,以及为什么它们在图像领域如此出色。在此基础上,我们将建立一个使用Keras的卷积神经网络。...在卷积神经网络术语中,卷积的第一个参数常被称为输入,第二个参数称为内核,其输出称为特征映射。现在我将向你展示如何在CNN中应用这个数学术语“卷积”。...你可以看到功能地图的尺寸发生了一些变化。 池化层 池化层主要用于连续卷积层之间。它用于减少表示的空间大小,减少参数的数量和网络的计算。池层独立地应用于输入的每个深度切片,并减少输入的空间维数。...如果我们在一个滤波器大小为2X2和步长为2的输入上应用一个最大池,那么它将在宽度和高度上将输入大小降低2倍,保持深度不受影响,这意味着它丢弃了75%的激活。下面是一个包含如何实现池层的图像。...在该层中,我们使用了64个大小为5X5的过滤器,然后是最大池化层。然后我们使用了一个平坦的层。之后,我们分别使用了具有ReLU和softmax激活的两个密集层。
样本是输入数据中样本的数量。输入中有20个样本。时间步长是每个样本的时间步长数。我们有1个时间步。最后,特征对应于每个时间步的特征数量。每个时间步都有一个功能。...每个样本将具有3个时间步长,其中每个时间步长将包含一个单一功能,即一个数字。每个样本的输出将是三个时间步长中每个步长的数字之和。...正如我之前所说,输出中的每个元素将等于相应输入样本中时间步长中的值之和。...输出中的每个值将是每个输入样本的第三时间步中两个特征值的总和。例如,第一个样本的第三时间步长具有特征9和15,因此输出将为24。...到目前为止,我们已经基于来自不同时间步长的多个要素值预测了单个值。在多对一序列的另一种情况下,您希望在时间步长中为每个功能预测一个值。
领取专属 10元无门槛券
手把手带您无忧上云