在顶点AI(Vertex AI)中使用XGBoost模型进行批量预测并保留实体标识符,通常涉及以下步骤:
以下是一个简化的示例,展示如何在顶点AI中进行批量预测:
from google.cloud import aiplatform
# 初始化客户端
client = aiplatform.gapic.JobServiceClient()
# 定义批量预测任务参数
batch_prediction_job = {
"display_name": "xgboost-batch-prediction",
"model": "projects/your-project-id/models/your-model-id",
"input_data": {
"gcs_source": {
"input_uris": ["gs://your-bucket/data.csv"]
}
},
"output_data": {
"gcs_destination": {
"output_uri_prefix": "gs://your-bucket/predictions/"
}
},
"job_spec": {
"worker_pool_specs": [
{
"machine_spec": {
"machine_type": "n1-standard-4"
},
"replica_count": 1,
"container_spec": {
"image_uri": "gcr.io/cloud-ml-base/xgboost-gpu",
"args": ["--input-data", "$INPUT_FILE", "--output-data", "$OUTPUT_FILE"]
}
}
]
}
}
# 提交批量预测任务
parent = client.common_location_path("your-project-id", "us-central1")
response = client.create_batch_prediction_job(parent=parent, batch_prediction_job=batch_prediction_job)
print(f"Batch prediction job created: {response.name}")
通过以上步骤和注意事项,可以在顶点AI中有效地利用XGBoost模型进行批量预测,并确保实体标识符的保留。
领取专属 10元无门槛券
手把手带您无忧上云