首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习中的交叉验证思想

因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初试条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。...通常我们使用的交叉验证方法有下面几种: 简单交叉验证(simple cross validation) 简单交叉验证当然很简单了,就是把整个训练集随机分为两部分(通常是70%的训练集,30%的评估集)。...K-折交叉验证(S-fold Cross Validation) 这个据说是最常用的验证方法了,步骤如下: 1、将数据集均分为K份 2、从K份中取一份作为评估集,另外K-1份作为训练集,生成K个模型以及这...K个模型对于评估集的训练误差; 3、取训练误差最小的那个模型作为最后的结果; 经大量实验验证,据说我们取K=10的时候效果最好。...这个方法一方面保证了数据充分被使用训练了,避免了数据的浪费;另一方面也互相进行了验证,达到了交叉验证的效果,不过计算代价还是有点高。

83220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 MATLAB 中实现复杂的深度学习模型以提高预测精度?

    在MATLAB中实现复杂的深度学习模型以提高预测精度可以通过以下步骤进行操作: 准备数据:首先,你需要准备好用于训练和测试模型的数据。...确保数据集已经正确加载到MATLAB工作环境中,并且进行了必要的预处理,例如归一化或者标准化。 构建模型:使用MATLAB的深度学习工具箱,可以通过构建网络层来设计和构建复杂的深度学习模型。...你可以使用classify函数对测试集进行分类,并计算模型在测试集上的准确率、精确率、召回率等指标来评估预测精度。 调优模型:如果模型的表现不理想,你可以尝试调整模型的参数以提高预测精度。...例如,你可以调整网络层数、隐藏单元数量、学习率等超参数来优化模型的性能。 进行预测:当模型训练完成并通过评估指标验证了其性能后,你可以使用该模型对新的数据进行预测。...总的来说,在MATLAB中实现复杂的深度学习模型以提高预测精度需要充分理解深度学习的基本概念和原理,并结合MATLAB强大的深度学习工具箱来设计、构建和训练模型。

    13610

    图解机器学习中的 12 种交叉验证技术

    今天我给大家盘点下机器学习中所使用的交叉验证器都有哪些,用最直观的图解方式来帮助大家理解他们是如何工作的。...CV-RMSE','TEST-RMSE']) 交叉验证 交叉验证(Cross Validation) 是在机器学习建立模型和验证模型参数时常用的方法。...顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集。用训练集来训练模型,测试集来评估模型的好坏。 交叉验证的目的 从有限的学习数据中获取尽可能多的有效信息。...交叉验证从多个方向开始学习样本的,可以有效地避免陷入局部最小值。 可以在一定程度上避免过拟合问题。...确保同一组中不同时处于训练集和验证集中。 该交叉验证器分组是在方法split中参数groups来体现出来的。

    2.8K20

    机器学习中的超参数的选择与交叉验证

    超参数有哪些   与超参数对应的是参数。参数是可以在模型中通过BP(反向传播)进行更新学习的参数,例如各种权值矩阵,偏移量等等。超参数是需要进行程序员自己选择的参数,无法学习获得。   ...,如beta1,beta2等等,但常见的做法是使用默认值,不进行调参),正则化方程的选择(L0,L1,L2),正则化系数,dropout的概率等等。...学习率 loss基本不变:学习率过低 loss震动明显或者溢出:学习率过高 根据以上两条原则,可以得到学习率的大致范围。 2.3....交叉验证   对于训练集再次进行切分,得到训练集以及验证集。通过训练集训练得到的模型,在验证集验证,从而确定超参数。...(选取在验证集结果最好的超参数)   交叉验证的具体实例详见CS231n作业笔记1.7:基于特征的图像分类之调参和CS231n作业笔记1.2: KNN的交叉验证。 3.1.

    1.9K90

    《揭秘机器学习中的交叉验证:模型评估的基石》

    在机器学习的复杂领域中,构建一个精准有效的模型是众多从业者的核心目标。...交叉验证的核心意义 抵御过拟合风险 在机器学习的训练过程中,模型可能会过度适应训练数据的细节和噪声,从而在新数据上表现不佳,这就是过拟合现象。...最大化数据利用效率 在数据宝贵的机器学习场景下,尤其是数据量有限时,交叉验证能充分挖掘每一个数据样本的价值。...在每次迭代中,选取一个子集作为验证集,其余K - 1个子集合并作为训练集;模型在训练集上进行训练,然后在验证集上测试其性能,记录相关指标,如准确率、召回率、均方误差等;重复上述过程,直到每个子集都作为验证集被使用一次...在机器学习的实际应用中,选择合适的交叉验证方法并正确运用,是构建高性能模型的重要环节。

    14210

    算法研习:机器学习中的K-Fold交叉验证

    在我们训练机器学习模型时,为提高模型拟合效果,经常使用K-Fold交叉验证,这是提高模型性能的重要方法。在这篇文章中,我们将介绍K-Fold交叉验证的基本原理,以及如何通过各种随机样本来查看数据。...什么是K-Fold交叉验证 交叉验证是用于估计机器学习模型技能的统计方法。也是一种用于评估有限数据样本的机器学习模型的重采样方法。该方法简单且易于理解。K-Fold将将数据集拆分为k个部分。...k = 10:k的值固定为10,这是通过实验发现的值,通常导致具有低偏差的模型技能估计,适度的方差。...k = n:k的值固定为n,其中n是数据集的大小,以便为每个测试样本提供在holdout数据集中使用的机会。这种方法称为留一交叉验证。...结论 在k-Fold交叉验证中存在与k选择相关的偏差 - 方差权衡。一般我们使用k = 5或k = 10进行k折交叉验证,以产生既不受过高偏差也不受非常高方差影响的测试误差率估计。

    2.4K10

    【机器学习】小样本学习的实战技巧:如何在数据稀缺中取得突破

    我的主页:2的n次方_ 在机器学习领域,充足的标注数据通常是构建高性能模型的基础。然而,在许多实际应用中,数据稀缺的问题普遍存在,如医疗影像分析、药物研发、少见语言处理等领域。...1.1 迁移学习 迁移学习作为小样本学习的重要基石,通过利用已在大规模数据集(如ImageNet)上预训练的模型,实现了知识的跨领域传递。这一过程显著降低了新任务对大量标注数据的需求。...小样本学习的常用技术 在实际应用中,小样本学习通常结合多种技术来应对数据稀缺问题。...实际案例:少样本图像分类 假设我们有一个小型图像数据集,包含少量样本,并希望训练一个高效的图像分类器。我们将结合迁移学习和数据增强技术,演示如何在数据稀缺的情况下构建一个有效的模型。...随着数据隐私保护意识的不断增强,以及在医疗、法律、金融等敏感领域获取大规模高质量标注数据的重重挑战,小样本学习正逐步成为机器学习领域的研究焦点与未来趋势。

    51310

    如何在机器学习的工作中获得成功?这是福布斯榜单CEO的八个建议

    2、保持好奇心 机器学习和人工智能技术都是现代化的科技,今后只会不断进步,所以保持健康的好奇心和学习心态非常重要,这能帮助你不断学习新的技术,真正做到与时俱进。...如果你想在机器学习领域取得成功,好奇心就是首要素质。” 3、把企业面临的问题翻译成数学术语 机器学习是一个非常讲究逻辑思维的领域。作为一项职业,它将科技、数学和商业分析融为一体。...4、讲究团队精神 “机器学习”这样的词或许会让人想到一个人在电脑和机器的包围下独自工作的场景。5年前或许是这样,但这个领域如今已经非常讲究合作。...7、参加在线课程或者数据科学训练营 你的目标是尽可能拓宽自己的机器学习相关技能。Douetteau提供了一些具体建议:‘首先将在线课程与机器学习竞赛融合起来。...从智能手机到聊天机器人,机器学习和人工智能专家的需求只会有增无减,所以现在是投身这个成长性行业的绝佳时机。

    92160

    基于自运动中准确估计地平面法向量方法

    然而,这些基于图像的方法由于地平面法线动态与图像线索之间的松散联系而导致精度不足。此外,大多数先前的研究简化(或假设)移动车辆的地平面法线矢量是恒定的,这与实际情况相反。...图3,具有恒定地平面法线的IPM图像:道路边缘未正确对齐 然而,如图3所示,在具有固定外部参数的相邻帧之间,通过使用恒定地平面法线进行IPM后,道路边缘未对齐。...(2)我们的方法依赖于附近的地平面始终可以近似为一个平坦的平面,并且车辆行驶平稳的假设。因此,如果车辆行驶在极不平整的道路上,如地形和斜坡,或者进行急转弯,估计精度可能会降低。...我们对车辆行驶时法线向量的动态特性进行了结构化研究,这些特性以前被认为是恒定的。通过可视化和定量实验证实了这一论点。...在公共数据集上的实验证明,我们的方法在单目和仅IMU里程计方面均取得了令人满意的精度。

    37310

    F-LOAM:基于激光雷达的快速里程计和建图

    摘要 同时定位与建图(SLAM)在机器人领域有着广泛的应用,如自动驾驶和无人驾驶等领域。一个好的SLAM系统其计算效率和定位精度是至关重要。...在每个扫描间隔期间,激光阵列在水平面上以恒定速度旋转,同时激光测量按顺时针或逆时针顺序进行。 原始点云匹配方法(如ICP)对噪声和动态对象(如人类)非常敏感,可用于自动驾驶。...如上所述,为了降低计算成本,基于恒定速度模型而不是迭代运动估计来执行失真补偿。 实验 A 实验设备 为了验证该算法,我们在大尺度室外环境和中等尺度室内环境下对F-LOAM进行了评估。...图3:KITTI数据集序列00-10上不同定位方法的比较。 C 仓储物流实验 在本实验中,我们的目标是建立一个自主的仓储机器人来取代人工主导的制造业。AGV设计用于执行日常任务,如运输。...这就要求机器人平台在复杂的环境中主动定位。 1) 仿真环境:首先在一个仿真环境中验证我们的算法。仿真环境建立在Gazebo和Linux-ubuntu18.04上。

    1.4K20

    论文简述 | Voxel Map for Visual SLAM

    1 摘要 在现代视觉SLAM系统中,从关键帧中检索候选地图点是一种标准做法,用于进一步的特征匹配或直接跟踪.在这项工作中,我们认为关键帧不是这项任务的最佳选择,因为存在几个固有的限制,如弱几何推理和较差的可扩展性...同步定位和建图是机器人学的基础,在各种现实应用中起着举足轻重的作用,如增强/虚拟现实和自主驾驶.过去十年,这一领域取得了快速进展.今天最先进的SLAM系统,特别是视觉惯性SLAM,在功率和内存受限的设备上实时执行...,并提供准确和鲁棒的估计.尽管该领域仍然存在挑战,但是SLAM已经达到了能够成功进行商业应用的成熟程度.基于关键帧的SLAM,在其他范例中,如基于过滤器的方法,可以说是当今最成功的一种.特别是基于关键帧的...: Naive-Keyframe:我们在墙上均匀地采样关键帧,这样每个点都属于一个唯一的关键帧.每个关键帧中的最大点数被固定为100.因此随着墙的长度增加,地图中的关键帧数量也会增加.这是为了模拟一个探索场景...4 结论 本文针对稀疏SLAM提出了一种可扩展的几何感知体素图,旨在跟踪过程中替代关键帧进行数据关联.地图被组织在体素中,并且每个体素可以在恒定的时间内使用其位置上的散列函数来访问.使用体素哈希方法,通过在恒定时间内对摄像机平截头体进行采样

    1.3K20

    自动数据增强论文及算法解读(附代码)

    机器学习和计算机视觉领域的一大重点是设计更好的网络架构。人们很少注意寻找更好的数据增强方法,这种方法包含更多的不变性。...图1 我们使用搜索方法(例如强化学习)来搜索更好的数据扩充策略的框架。控制器RNN从搜索空间预测扩充策略。训练一个具有固定结构的子网络,使其收敛到精度R。...我们强调了应用子策略的随机性,通过展示一幅图像如何在不同的小批量中进行不同的转换,即使使用相同的子策略也有可能采用不同的操作。如文中所述,在SVHN上,几何变换更多地是通过自动增强来选择的。...梯度通过子网络的验证精度进行缩放,以更新控制器RNN,从而控制器为性能不好的子网络分配低概率,为精度高的子网络分配高概率。我们强化学习算法采用了近端策略优化(PPO),学习率为0.00035。...下图中,我们展示了不同子模型神经网络架构下的测试集精度,并找到了权重衰减和学习率超参数,这些超参数为基线增强的常规训练提供了最佳验证集精度。

    96820

    西工大张伟伟教授:智能流体力学研究的进展

    张伟伟教授在报告中提到,湍流模型机器学习方法和湍流数据同化方法,将摆脱对传统湍流模型的依赖,实现飞行器高雷诺数湍流场的高精度求解。...如何在求解过程中保证耦合求解的收敛性和稳定性是一个非常具有挑战性的问题。 在我们的前期工作中,主要分为两部分。...第一部分,探索能不能利用经典湍流模型生成的数据,构建机器学习模型,并以此替代经典湍流模型。 第二部分,由于经典模型的计算精度不够,我们探索可以通过什么方法来提升机器学习模型的精度?...这主要是因为实验样本量比较少,而这个问题本身的维度比较高,非线性比较强,使得我们面临一个小样本的机器学习难题。 此外,不同来源的数据的精度和成本也不一样。数值模拟要往高精度的方向走,成本是非常高的。...但这两个方法显然都具有局限性,但通过我们把这两个模型进行集成,测试结果表明,这种集成模型架构有效解决了小样本学习的泛化性难题。 我们对这个模型架构进行了验证。

    1.5K10

    理解目标检测模型中的性能评估

    【导读】近日,机器学习工程师Tarang Shah发布一篇文章,探讨了机器学习中模型的度量指标的相关问题。...本文首先介绍了机器学习中两个比较直观和常用的度量指标:精确度和召回率,然后详细讲解了目标检测领域最常用的度量指标——均值平均精度(mAP),并图解了给定边界框的正确性的度量标准IoU – 交并比。...通过阅读本文,你将掌握机器学习模型,特别是目标检测领域的各种度量指标,这有助于在科研和项目中衡量你的模型。专知内容组编辑整理。 ? What is mAP ?...目标检测模型通常是在一组固定的类上进行训练的,所以模型只能定位和分类图像中的那些类。 此外,目标的位置通常是边界矩形的形式。所以,目标检测涉及图像中目标的位置信息和对目标进行分类。 ?...MAP =所有类别的平均精度求和除以所有类别 所以,均值的平均精度就是数据集中所有类的平均精度的平均值。 当我们比较MAP值时要记住一些重要的点 MAP总是在固定数据集上计算。

    3.1K50

    学界 | Facebook 新研究:大批量SGD准确训练ImageNet仅需1小时

    选自arXiv 机器之心编译 参与:蒋思源 由于近来互联网数据越来越大,深度学习模型越来越复杂,执行训练的时间也越来长。...通过这些简单的技术,我们基于 Caffe2 的系统可以使用批量大小为 8192 进行训练 ResNet-50 网络,该训练不仅在 256 块 GPU 上只花费一小时就能完成,同时还有匹配小批量的精度。...图 1: ImageNet 最好的验证误差 vs. 小批量大小 ? 图 2:没有预热方案、恒定预热方案和逐步预热方案(gradual warmup)的训练误差对比。 ? 图 3:训练误差 vs....小批量 SGD 的训练和验证曲线。 ? 图 5:使用不同学习率 η 的小批量 SGD 训练曲线。 ? 图 6: ImageNet-5k 最好的验证损失 vs. 小批量大小 ?...图 8:分布式同步 SGD 的图像吞吐量。 ? 本文为机器之心编译,转载请联系本公众号获得授权。

    93570

    哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈

    另外,我个人认为,值得花费一半的计算预算来进行一次大规模运行,以验证这个拟合是否适用于大模型。...然而,模型训练和推理时使用的精度,是影响成本和性能的重要「第三因素」。 深度学习正在向低精度发展:当前的前沿模型(如Llama-3)使用BF16训练,并且普遍努力将预训练范式转向FP8。...量化训练Scaling Law 研究人员探索了如何在训练阶段调整模型处理数据的精度,包括模型的权重、激活值和KV缓存,测试了3位到12位的不同精度设置,并与BF16高精度基准进行比较。...时的损失为: 局限性 论文作者指出,当前研究还存在几个限制: 在实验过程中,使用了固定的模型架构和设置,但在实践中,经常会专门进行架构调整以适应低精度训练。...Tanishq Kumar Tanishq是哈佛大学数学专业的大四学生,研究机器学习理论和计算神经科学。他最感兴趣的是将理论工具应用于深度学习中鲜为人知的经验主义谜题。

    5500

    “穿墙透视”黑魔法来了!只需WiFi和智能手机就可实现

    研究人员表示在11个真实世界的地点用实验验证了这种攻击,并以较高的精度显示了用户跟踪。...第三,我们在普通智能手机上实现了攻击系统的原型,并在11个不同的环境中验证了攻击的可行性和准确性,包括办公楼和住宅楼。...利用被检测到的WiFi设备作为锚装置,攻击者可以从信号中提取出细微的变化,以识别和跟踪目标如何在室内的各个房间中移动。...以分析跟踪精度。图10显示了CDF的持续时间估计误差,其中80%的情况下,误差小于16秒。 WiFi设备的触发距离。如之前描述的那样,每个锚设备也具有触发距离。...但精度恒定在99.94%。这意味着某些WiFi设备在空闲时不能单独用于检测用户的存在。但是,由于设备在不同时间传输了数据包,攻击者可以聚合来自多个锚点的结果,以提高检测准确性。

    1.5K30

    重塑锂电池性能边界,武汉理工大学康健强团队,基于集成学习提出简化电化学模型

    但锂电池的爆炸威力如同一个小型炸药包,未经控制的电池热失控后会产生爆炸失火,又因为锂离子着火后会产生助燃气体如氧气,这会导致后续的二次燃烧和反复燃烧,一旦起火很难被扑灭。...对此,武汉理工大学康健强团队提出了一种集成学习 + FIE 的简化电化学模型模型,其中集成学习模型基于机器学习,集成了离散时间实现算法 (Discrete-time realization algorithm...集成学习 (Ensemble Learning Model, ELM) 作为一种典型的机器学习技术,可以通过结合多个模型,实现比任何单独模型更好的预测性能。...实验三:验证 ELM 模型在动态工况下的有效性 FUDS动态模拟 (A) 一个周期FUDS电流;(B) DRA、FOM、TPM、ELM和P2D模型电池电压 为验证 ELM 模型在动态工况下的有效性,研究人员对不同模型进行了...*数字孪生的主要功能是通过收集现实世界里的实时数据,利用机器学习和分析技术进行数据处理,模拟和预测物体在现实世界中可能产生的反应和情况,进而研究其性能。

    21210

    最讨厌说大话,只想聊经验!我从创建Hello world神经网络到底学会了什么?

    根据我在其他机器学习领域的相关专题的经验,非常详细的数学解释,各种各样的衍生以及公式让人理解起来特别困难。于是,我决定暂时抛开这些。 当然这并不是说能立即上手写代码。...其中包括梯度下降法,前向和后向的传播,以及我如何在创建神经网络的时候运用它们。非常的简洁实用,我把这些方法总结如下: 前向传播是指通过所有的下面的层来传播每一层的输出,直到我们的输出层。...从我短暂的实操经验和我做过的研究来讲,我想说调试神经网络更像是一种艺术,因为这个过程通常没有固定的规则来引导你去做每一个场景。尽管如此,随着经验的增加,你会通过调试得到一些直觉。...我的感知器的失败会汇聚到正确的预测,这是因为我为梯度下降中的学习速率设置了一个大值。 在这个步骤中,算法实际是在精确度开始连续下降的那一刻刚好绕过了最小值。...由于所开发的代码没有针对结果准确性或执行效率进行优化,所以有许多改进的方法,包括如下几点: 对调优参数、激活函数和损失函数进行进一步的试验。 实现非恒定学习速率。

    63950
    领券