首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

高效工作流:用Mermaid绘制你的专属流程图;如何在Vue3中导入mermaid绘制流程图

:三、Vue3中如何引入mermaid 高效工作流:用Mermaid绘制你的专属流程图 一、流程图的使用场景 1.1、流程图flowChart 流程图是对某一个问题的定义、分析或解法的图形表示...电灯修理思路流程图 1.2、使用场景 流程图使用场景非常广泛,如软件开发、项目管理、工作流程、科学研究、制造和生产等。...使用的话用三个连续的英文冒号即可,如:A[1]:::inputData --> B[2]:::process graph TD %% 定义节点样式 classDef inputData fill:#...onMounted(() => { mermaid.initialize({ startOnLoad: true }); mermaid.init(); }); 四、mermaid绘制流程图的优缺点...而且柔滑的贝塞尔曲线看起来非常不专业(从来没在论文里面见过弯曲连线的流程图) 五、总结 mermaid是一款非常优秀的基于 JavaScript 的图表绘制工具,可渲染 Markdown

15310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【5分钟玩转Lighthouse】Python绘制图表

    本文将讲解如何在Lighthouse等云服务器上通过display、Python、Matplotlib等工具查看和绘制各类图表。...0x03 安装Matplotlib Matplotlib简介 Matplotlib,是用于绘制各种图表(包括静态图、动图、甚至交互图)的Python库。...__version__)" # 会输出显示matplotlib的版本号,即安装成功 $ 3.3.2 0x04 Matplotlib示例——数据统计图 本节介绍下最常用的统计图类的绘制示例。...示例——多函数曲线 除了已有数据的统计图,我们还可用Matplotlib绘制函数曲线图,并且同时绘制多个曲线。...其实Matplotlib功能非常强大,还有对散点图、热度图、3D图等多种支持,甚至还可以保存绘制过程为动图/视频,更加直观的显示数据之间的关系。

    10.1K4617

    【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)

    7.3 动态生成图表 在某些应用场景中,图表需要根据用户的输入或数据的变化实时更新。接下来我们展示如何在 PyQt5 中动态生成和更新 matplotlib 图表。...(data) 绘制新的数据,最后调用 self.draw() 刷新图表。...7.4 在应用程序中展示不同类型的图表 matplotlib 支持多种类型的图表,包括折线图、柱状图、饼图等。接下来我们展示如何在 PyQt5 中展示这些不同类型的图表。...7.5 总结 在这一部分中,我们学习了如何在 PyQt5 中嵌入 matplotlib 图表,实现数据的可视化展示。...7-8部分总结:图表与对话框 在第7至第8部分中,我们探讨了如何在 PyQt5 中使用 matplotlib 实现数据的可视化,并展示了如何在界面中嵌入折线图、柱状图、饼图等多种图表。

    62311

    这种两个Colorbar的图形怎么绘制?这样做真的超简单...

    「绘图技巧」 :如何在同一个图形上显示两个colorbar 今天我们的学员交流群里有人咨询: 如何在一个图形中同时显示两个Colorbar?特别是在绘制地图的时候。...其实,这个技巧在我们课程新增的案例里就有类似的内容,今天就Python语言中Matplotlib工具,简单给大家介绍下,同时绘制两个colorbar的绘图技巧 Matplotlib 两个Colorbar...添加 在Matplotlib中,绘制两个甚至多个colorbar的核心技巧可以总结为以下两点: 绘制colorbar位置部分 使用fig.colorbar()函数映射正确的数值和绘图对象 绘制colorbar...位置部分 这一个操作一般都是使用Matplotlib中画布对象fig的*add_axes()*, 该函数的主要作用是Matplotlib中用于在图形(Figure)上添加新的坐标轴(Axes)的方法之一...其中: mappable: 需要创建色条的可映射对象(例如,返回图像或集合的绘图对象,如 imshow() 或 scatter() 的结果)。

    31810

    动态数据可视化—使用Python的Matplotlib库创建动态图表的技巧与实践

    在数据可视化领域,Matplotlib库是Python中最流行和功能强大的工具之一。它能够生成各种静态图表,如散点图、折线图和柱状图等。...(h) # 更新柱状图的高度 plt.draw() # 重新绘制图表 plt.pause(0.1) # 暂停一小段时间,使得动画效果更明显在这个示例中,我们首先初始化了柱状图的数据 categories...接下来,我们通过循环生成新的随机数据,并更新柱状图的高度,然后通过 plt.draw() 重新绘制图表,并通过 plt.pause() 使得动画效果更明显。...接下来,我们通过循环生成新的随机数据,并更新饼图的大小,然后通过 plt.draw() 重新绘制图表,并通过 plt.pause() 使得动画效果更明显。...通过这些示例,我们学习了如何在Matplotlib中打开交互模式,创建图形窗口和子图,以及如何通过循环更新图表的数据,从而实现动态效果。

    74510

    seaborn的介绍

    在seaborn中有几种专门的绘图类型,这些类型已针对可视化此类数据进行了优化。他们可以通过访问catplot()。...每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。例如,使用scatterplot()函数绘制散点图,并使用barplot()函数绘制条形图。...这些函数称为“轴级”,因为它们绘制到单个matplotlib轴上,否则不会影响图的其余部分。...最后,在与底层matplotlib函数(如scatterplot()和plt.scatter)直接对应的情况下,其他关键字参数将传递给matplotlib层: ?...我们上面使用的“fmri”数据集说明了整齐的时间序列数据集如何在不同的行中包含每个时间点: 学科 时间点 事件 区域 信号 0 S13 18 STIM 顶叶 -0.017552 1 S5 14 STIM

    4K20

    高效使用 Python 可视化工具 Matplotlib

    如果你花时间了解了这一点,才会理解matplotlib API的其余部分。此外,许多python的高级软件包,如seaborn和ggplot都依赖于matplotlib。...现在,数据被格式化成一个简单的表格,我们来看如何将这些结果绘制成条形图。...现在坐标轴保存在ax变量中,我们有很多的控制权: fig, ax = plt.subplots() top_10.plot(kind= barh , y="Sales", x="Name", ax=ax...在这个例子中,我们将绘制一条平均线,并显示三个新客户的标签。下面是完整的代码和注释,把它们放在一起。...还指定了分辨率dpi和bbox_inches =“tight”来尽量减少多余的空格。 结论 希望这个过程有助于你了解如何在日常的数据分析中更有效地使用matplotlib。

    2.4K20

    Hans Rosling Charts Matplotlib 绘制

    统计学家Hans Rosling在TED上关于《亚洲何时崛起》的演讲,其所采用的数据可视化展示方法可谓是近年来经典的可视化案例之一,动态的气泡图生动的展示了中国和印度是如何在过去几十年拼命追赶欧美经济的整个过程...数据可视化 Matplotlib 用于绘制动态图表主要涉及到 animation 模块,而制作动图,则需要分为以下三个步骤: 1、静态绘图函数的编写。...本推文绘制动态图的完整代码如下: ?...知识点讲解: (1)第 12 行在 matplotlib 绘制动态图表过程中非常重要,一般设置较大值,如2**64 或者 2**128,其目的就是为了消除动态图过大,导致出图不完整问题。...以上,基于matplotlib的动态气泡图就绘制完成了,难点:在于多类别图例的添加,可以参考本文方法也可参考官网方法。 下面给出本例子其中一年份数据绘图的结果图 : ? 04.

    3K30

    高效使用 Python 可视化工具 Matplotlib

    如果你花时间了解了这一点,才会理解matplotlib API的其余部分。此外,许多python的高级软件包,如seaborn和ggplot都依赖于matplotlib。...现在,数据被格式化成一个简单的表格,我们来看如何将这些结果绘制成条形图。...现在坐标轴保存在ax变量中,我们有很多的控制权: fig, ax = plt.subplots() top_10.plot(kind= barh , y="Sales", x="Name", ax=ax...在这个例子中,我们将绘制一条平均线,并显示三个新客户的标签。 下面是完整的代码和注释,把它们放在一起。...还指定了分辨率dpi和bbox_inches =“tight”来尽量减少多余的空格。 结论 希望这个过程有助于你了解如何在日常的数据分析中更有效地使用matplotlib。

    2.4K20

    Matplotlib库

    高级绘图技巧 Matplotlib 还支持一些高级绘图技巧,如动画绘制、多图并排显示、自定义坐标轴样式等。此外,它还支持将图片导出为多种格式,如 PDF、SVG、JPG、PNG 等。 6....通过掌握其基本用法和高级技巧,你可以在数据分析和科学计算中获得极大的帮助。 Matplotlib中如何实现动画绘制?...在Matplotlib中实现动画绘制主要通过使用FuncAnimation函数来完成。...Matplotlib允许用户绘制多个子图,并通过调整布局来避免子图之间的重叠。例如,可以使用紧缩布局(tight_layout)方法来优化图形的布局,使各个子图之间不会相互干扰。...此外,还可以通过代码实现多图排列,如使用OpenCV和matplotlib结合实现多图排列。总结来说,Matplotlib提供了多种方法来实现多图并排显示,以满足不同的需求。

    7510

    使用Python绘制一只可爱的小猫

    在本篇技术博客文章中,我们将使用Python绘制一只可爱的小猫。我们将使用Python中的绘图库来实现这个任务。在这个示例中,我们将使用matplotlib库来进行绘图操作。...运行以下命令来安装它:pip install matplotlib绘制小猫轮廓我们将使用matplotlib库中的plot函数来绘制小猫的轮廓。...以上代码演示了如何在实际应用场景中使用Python的matplotlib库来绘制一只可爱的小猫表情包,并将其保存为图片文件供后续使用。...以下是matplotlib库的一些主要特点和功能:多样化的图形类型:matplotlib支持多种图形类型,包括线图、散点图、柱状图、饼图、3D图等,可以满足不同数据展示需求。...支持多种输出格式:matplotlib可以直接输出图形到多种图形文件格式,如PNG、JPG、PDF等,也支持在GUI窗口中显示图形。

    41510

    深入探讨在Matplotlib中自定义颜色映射与标签的实用指南

    本文将深入探讨如何在Matplotlib中自定义颜色映射与标签,并提供详细的代码实例。1. 什么是颜色映射?颜色映射(Colormap)是一种将数值映射到颜色的函数。...我们将使用Matplotlib和Basemap库(一个用于绘制地图的扩展库)来绘制城市温度分布图,并自定义颜色映射和标签。...总结总结本文详细探讨了如何在Matplotlib中自定义颜色映射和标签,并提供了多个应用实例,以帮助你深入理解这些技术。...结合matplotlib.widgets模块中的滑块,实现交互式的颜色映射调整。实际应用案例:在地理数据可视化中应用自定义颜色映射和标签,提升地图图表的直观性。...通过离散型颜色映射和交互式工具(如Plotly)增强图表的灵活性和美观度。应用注意事项:选择适合的颜色映射和标签,考虑颜色盲友好性和标签的清晰性。提供适当的交互功能,以增强数据的探索性和可读性。

    28920

    动态气泡图绘制,超简单~~

    统计学家Hans Rosling在TED上关于《亚洲何时崛起》的演讲,其所采用的数据可视化展示方法可谓是近年来经典的可视化案例之一,动态的气泡图生动的展示了中国和印度是如何在过去几十年拼命追赶欧美经济的整个过程...经典的可视化库Matplotlib再现这经典的动态气泡图,或者说Hans Rosling Charts。...数据可视化 Matplotlib 用于绘制动态图表主要涉及到 animation 模块,而制作动图,则需要分为以下三个步骤: 1、静态绘图函数的编写。...本推文绘制动态图的完整代码如下: 知识点讲解: (1)第 12 行在 matplotlib 绘制动态图表过程中非常重要,一般设置较大值,如2**64 或者 2**128,其目的就是为了消除动态图过大,导致出图不完整问题...以上,基于matplotlib的动态气泡图就绘制完成了,难点:在于多类别图例的添加,可以参考本文方法也可参考官网方法。 下面给出本例子其中一年份数据绘图的结果图 : 04.

    3.6K20

    在Python中绘图,更丰富,更专业

    标签:Python与Excel,pandas Excel使绘制图形变得非常容易。Python也是如此!这里,我们将快速熟悉如何在Python中绘制图形。...Python成为优秀的绘图工具(对比Excel)的一个原因是,可以轻松地从Internet获取数据,然后使用Python进行绘图。如果我们需要使用一些在线数据并想在Excel中绘图,我们该怎么办?...df = df.iloc[:,4:] global_num = df.sum() 图2 现在我们有了一个一维表:日期和相应日期的确认新冠病毒病例。我们将用它来绘制一段时间内的全球新冠病毒病例。...pandas提供了一种直接从数据框架绘制图形的便捷方法,我们只需要使用dataframe.plot()。但是必须记住,在绘制后要让matplotlib显示图形,就需要使用plt.show()。...import matplotlib.pyplot as plt global_num.plot() plt.show() 图3 考虑到我们只使用了2行代码,我们甚至都没有告诉pandas哪一列是x轴,

    1.8K20

    Matplotlib 另类时间变化图制作

    引言 本期推文主要介绍的还是Matplotlib关于 线(lines) 图的制作,虽然Matplotlib 制作线图的灵活性无法和ggplot2 的geom_segment()相比,但对于使用 Python...(2)创建绘图辅助数据 这里需要创建用于绘图的辅助数据 ,涉及到的知识点也都是python数据 处理中常用的技巧,如append()、np.repeat()、pandas的apply()结合lambda...(2)连接线的绘制 Matplotlib 连接线的绘制方法还是还是采用上期推文Matplotlib 气球图 制作 中方法,此外还添加了文本绘制,如下: ? 效果如下(部分): ?...(5)图例文本的绘制 用于文本图例的绘制方法,即上面介绍的死因(cause)新数据集,绘制如下: ? 效果如下: ?...(6)字体设置 Matplotlib 用于字体设置的方法还是比较简单的,这里解释下是因为我在字体设置时遇到的问题,由于采用的字体为 cinzel (字体格式为Cinzel-Regular.otf),也已添加到电脑系统字体中

    1.4K10

    数据科学 IPython 笔记本 8.9 自定义图例

    绘图的图例将意义赋予可视化,为各种绘图元素标识意义。我们以前看过如何创建简单的图例;在这里,我们将介绍如何在 Matplotlib 中自定义图例的位置和样式。...可以使用plt.legend()命令创建最简单的图例,该命令会自动为任何已标记的绘图元素创建图例: import matplotlib.pyplot as plt plt.style.use('classic...plt.plot()命令可以一次创建多个线条,并返回已创建的线条实例的列表。...为此,一个很好的工具选择是 Matplotlib 的 Basemap 附加工具包,我们将在“地理数据和 Basemap”中探讨。 多个图例 有时在设计绘图时,你需要在同一轴域上添加多个图例。...来实现),你会看到该函数只包含一些逻辑,创建合适的Legend艺术家,然后将其保存在legend_属性中,并在绘图时添加到图形中。

    1.9K20
    领券