Spark提供了灵活易用的SQL/DataFrame API接口,高效的SQL Runtime执行引擎以及丰富的周边生态和工具。...在Hive/Spark/Presto等分布式SQL引擎中,给用户提供了多种手段用于控制数据的组织方式,比如下面的几个示例: 通过分区将不同分区的数据置于不同的子目录中,从而带有分区字段过滤的查询可以直接跳过不相干的分区目录...可以看到,如果根据z-values的顺序对数据进行排序,并平均分为4个文件,无论我们在查询中使用x或y字段过滤进行点查询,都可以skip一半的不相干文件,如果数据量更大,效果会更好,也就是说,基于Z-Order...交叉合并的z-value比特位是各个维度值比特位之和,合并后的比特位如果超过64(即一个Long类型的比特位),如何在开发语言中存储和表达z-value的值并进行比较。...,排序的序号值自然就是从0开始的连续正整数,且和数据本身的顺序保持一致,但是这种做法的计算代价太大了,对于所有参与Z-ORDER字段需要全局排序,构建字典,在Shuffle时基于字典获取映射值参与z-value
需要注意的一件重要的事情是,除了基于编程数据的处理功能之外,Spark还有两个显著的特性。一种是,Spark附带了SQL作为定义查询的替代方式,另一种是用于机器学习的Spark MLlib。...2.PySpark Internals PySpark 实际上是用 Scala 编写的 Spark 核心的包装器。...Spark 可以非常快速地查询大型数据集.好的,那么为什么 RDD filter() 方法那么慢呢?...3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...42 的键 x 添加到 maps 列中的字典中。
Iceberg 通过将 SQL 表的可靠性和简洁性带入大数据,使得 Spark、Trino、Flink 等引擎能够更高效地进行数据处理。...时间旅行:用户可以查询特定时间点的数据,轻松实现数据的审计和回滚。 分区进化:Iceberg 支持动态分区,使得分区方案可以在不影响现有数据的情况下进行修改。...集成处理引擎:根据你的需求,选择与 Iceberg 集成的处理引擎(如 Spark、Flink 等),并配置相应的连接。...示例代码 以下是一个简单的示例,展示了如何在 Apache Spark 中使用 Iceberg: import org.apache.iceberg.Table; import org.apache.iceberg.catalog.TableIdentifier...my_catalog.default.my_table VALUES (1, 'data')"); // 查询数据 spark.sql("SELECT * FROM
SparkSQL由4个部分构成: Core:负责处理数据的输入/输出,从不同的数据源获取数据(如RDD、Parquet文件),然后将查询结果输出成DataFrame Catalyst:负责处理查询语句的整个过程...Analyzer过程中使用了自身定义的多个Batch,如MultiInstanceRelations,Resolution,CheckAnalysis和AnalysisOperators:每个Batch...","1.5") Spark3.0 YYDS Apache Spark 3.0 增加了很多令人兴奋的新特性,包括动态分区修剪(Dynamic Partition Pruning)、自适应查询执行(Adaptive...比如上面的 SQL 查询,假设 t2 表 t2.id Spark 无法进行动态计算代价,所以可能会导致 t1 表扫描出大量无效的数据。...而有了 AQE(自适应查询执行) 之后,Spark 就可以动态统计相关信息,并动态调整执行计划,比如把 SortMergeJoin 变成 BroadcastHashJoin: ?
通过Spark SQL,可以针对不同格式的数据执行ETL操作(如JSON,Parquet,数据库)然后完成特定的查询操作。...可以在用HiveQL解析器编写查询语句以及从Hive表中读取数据时使用。 在Spark程序中使用HiveContext无需既有的Hive环境。...Spark SQL示例应用 在上一篇文章中,我们学习了如何在本地环境中安装Spark框架,如何启动Spark框架并用Spark Scala Shell与其交互。...1G Spark SQL应用 Spark Shell启动后,就可以用Spark SQL API执行数据分析查询。...Spark SQL是一个功能强大的库,组织中的非技术团队成员,如业务分析师和数据分析师,都可以用Spark SQL执行数据分析。
关与SQL在Hadoop上运行,Cloudera会继续支持用与BI分析的Impala,用于批量处理的Hive on Spark,以及用于混合Spark和SQL应用程序的Spark SQL。...除了Spark SQL外,Michael还谈到Catalyst优化框架,它允许Spark SQL自动修改查询方案,使SQL更有效地执行。 2....目前,它支持流之间简单的查询以及流和结构化数据之间的相互操作,也支持在Catalyst中的典型用法(如LINQ表达式,SQL和DStream的结合)。...与YARN更紧密的集成,比如动态调整资源分配,来更好的支持multi-tenency。 Spark SQL作为新的SQL引擎来取代Shark。...基于Catalyst的优化引擎可以直接为Spark内核进行优化处理。即将推出的动态代码生成将大大提高查询效率。
下面是本次发布的主要特性,包括性能、API、生态升级、数据源、SQL兼容、监控和调试等方面的升级。 ? 本次主要整理了性能方面的优化,包括了自适应查询与动态分区裁剪。...1.1 动态分区合并 在Spark的经典优化策略里,调整分区数从而改变并行度是最基本的优化手段,可以调整的分区数却不是那么容易找到最优值的。...2 动态分区裁剪 这个比较好理解,正常Spark或Hive在查询时,会根据查询条件与分区字段自动过滤底层的数据文件。但是如果过滤条件没有及时的反映到查询上,就会导致数据被冗余加载。...经过动态分区优化后,右表可以直接添加过滤条件,如 id in (select id from lefttable where filter_cond) , 这样可以提前过滤掉部分数据。...3 关联提示 之前在Flink中看到过这种用法,即在sql中使用某种代码提示,让编译器根据代码提示选择优化策略执行。语法如:/** xxx /。
Hive Parser开始被Spark Parser替代,Spark SQL仍然支持HQL,但语法已经大大扩展。Spark SQL现在可以运行所有TPC-DS查询,以及一系列Spark特定的扩展。...3.单点问题,所有Spark SQL查询都走唯一一个Spark Thrift节点上的同一个Spark Driver,任何故障都会导致这个唯一的Spark Thrift节点上的所有作业失败,从而需要重启Spark...4.并发差,上述第三点原因,因为所有的查询都要通过一个Spark Driver,导致这个Driver是瓶颈,于是限制了Spark SQL作业的并发度。...》 2.在CDH5中安装Spark2.1的Thrift服务,参考《0280-如何在Kerberos环境下的CDH集群部署Spark2.1的Thrift及spark-sql客户端》 ?...如何在CDH5中使用最新的Spark2.4 Thrift,请关注Fayson后续的文章。
1、写完sql查询语句,sql的查询引擎首先把我们的查询语句进行解析,也就是Parse过程,解析的过程是把我们写的查询语句进行分割,把project,DataSource和Filter三个部分解析出来从而形成一个逻辑解析...他们采用的策略是首先把sql查询语句分割,分割不同的部分,再进行解析从而形成逻辑解析tree,然后需要知道我们需要取数据的数据表在哪里,需要哪些字段,执行什么逻辑,这些都保存在数据库的数据字典中,因此bind...Spark SQL核心—Catalyst查询编译器 Spark SQL的核心是一个叫做Catalyst的查询编译器,它将用户程序中的SQL/Dataset/DataFrame经过一系列操作,最终转化为Spark...Spark SQL运行架构 sparksql 整体模块.png TreeNode 逻辑计划、表达式等都可以用tree来表示,它只是在内存中维护,并不会进行磁盘的持久化,分析器和优化器对树的修改只是替换已有节点...| sql函数的返回值是什么类型? item的类型是什么? DataFrame Row dataframe 与dataset 怎么转换?
数据跳过对于优化查询性能至关重要,通过启用包含单个数据文件的列级统计信息(如最小值、最大值、空值数等)的列统计索引,对于某些查询允许对不包含值的文件进行快速裁剪,而仅仅返回命中的文件,当数据按列全局排序时...,在需要通过复杂的多列排序键对行进行排序的用例中,此属性非常方便,这些键需要通过键的任何子集(不一定是键前缀)进行有效查询,从而使空间填充曲线对于简单的线性(或字典序)多列排序性能更优。...如果应用得当,在此类用例中使用空间填充曲线可能会显着减少搜索空间,从而大幅度提高查询性能。 这些功能目前处于实验阶段,我们计划很快在博客文章中深入研究更多细节,展示空间填充曲线的实际应用。...5.3 Spark-SQL主键要求 Hudi中的Spark SQL需要在sql语句中通过tblproperites或options指定primaryKey。...Spark SQL 如Create Table语法详情参考Create-table-datasource[14]。
这种结构能很好的适应动态的查询。...采用字典编码,最后存储的数据便是字典中的值,及每个字典值的长度以及字段在字典中的位置; 采用 Bit 编码,对所有字段都可采用 Bit 编码来判断该列是否为 null, 如果为 null 则 Bit 值存为...注:在 Hive 中使用布隆(bloom)过滤器,可以用较少的文件空间快速判定数据是否存在于表中,但是也存在将不属于这个表的数据判定为属于这个这表的情况,这个情况称之为假正概率,可以手动调整该概率,但概率越低...直接设置parquet.compression 配置项是无效的,因为它会读取 spark.sql.parquet.compression.codec 配置项的值。...当 spark.sql.parquet.compression.codec 未做设置时默认值为 snappy,parquet.compression 会读取该默认值。
最近 Databeans 发布了一篇博客[2],其中使用 TPC-DS 基准对 Hudi/Delta/Iceberg 的性能进行了正面比较。...例如: • 基准 EMR 运行时配置未完全披露:尚不清楚,例如Spark 的动态分配功能[3]是否被禁用,因为它有可能对测量产生不可预测的影响。...我们关闭了 Spark 的动态分配功能[6],以确保我们在稳定的环境中运行基准测试,并消除 Spark 集群决定扩大或缩小规模时结果中的任何抖动。...我们已经公开分享了我们对 Delta 基准测试框架的修改[8],以支持通过 Spark Datasource 或 Spark SQL 创建 Hudi 表。这可以在基准定义中动态切换。 2....由于 tpc-ds 主要关注快照查询,在这个特定的实验中,这些字段已被禁用(并且未计算),Hudi 仍然将它们保留为空值,以便在未来打开它们而无需模式演进。
与 Spark 深度集成 CarbonData 已与 Apache Spark 深度集成,提供 Spark SQL 的查询优化技术并使用其代码生成功能。...这使得可以使用 Spark SQL 直接查询 CarbonData 文件,从而提供更快、更高效的查询结果。 支持全局字典编码 此功能有助于压缩表中的公共列,从而提高过滤查询的性能。...全局字典编码通过用整数代理键替换高基数字符串值来减小数据的大小。这会减少磁盘 IO 操作,从而加速查询执行。...同时,Blocklet级索引和数据存储在一起,减少查询过程中的I/O操作。 字典编码: 为了优化具有高基数的字符串类型列,CarbonData 使用全局字典。...这个全局字典维护唯一列值到较短代理键的映射,然后将其用于存储和处理,从而使过滤等操作更快。 三、相对于较旧的大数据格式的重要性 传统的大数据格式(例如 CSV 和 Avro)存在一定的局限性。
SparkSession是与Spark进行交互的入口点,并提供了各种功能,如创建DataFrame、执行SQL查询等。...查询使用PySpark,您还可以执行SQL查询。...下面的示例展示了如何注册DataFrame为临时表,并执行SQL查询。...但希望这个示例能帮助您理解如何在实际应用场景中使用PySpark进行大规模数据处理和分析,以及如何使用ALS算法进行推荐模型训练和商品推荐。PySpark是一个强大的工具,但它也有一些缺点。...Apache Hive: Hive是一个基于Hadoop的数据仓库基础设施,提供SQL查询和数据分析功能。它使用类似于SQL的查询语言(称为HiveQL)来处理和分析大规模数据集。
组件扩展:SQL 语法解析器、分析器、优化器均可重新定义。 性能优化:内存列存储、动态字节码生成等优化技术,内存缓存数据。 多语言支持:Scala、Java、Python、R。...Spark SQL原理及组成 Catalyst 优化: 优化处理查询语句的整个过程,包括解析、绑定、优化、物理计划等,主要由关系代数(relation algebra)、表达式(expression)以及查询优化...Spark SQL 内核: 处理数据的输入输出,从不同数据源(结构化数据 Parquet 文件 JSON 文件、Hive 表、外部数据库、已有 RDD)获取数据,执行查询(expression of queries...Spark SQL执行流程 SqlParser 对 SQL 语句解析,生成 Unresolved 逻辑计划(未提取 Schema 信息); Catalyst 分析器结合数据字典(catalog)进行绑定...动态代码和字节码生成技术:提升重复表达式求值查询的速率。 Tungsten 优化: 由 Spark 自己管理内存而不是 JVM,避免了 JVM GC 带来的性能损失。
首先介绍一下Zeppelin,然后说明其安装的详细步骤,之后演示如何在Zeppelin中添加MySQL翻译器,最后从功能、架构、使用场景几方面将Hue和Zeppelin做一个比较。 1....插件式架构允许用户在Zeppelin中使用自己熟悉的特定程序语言或数据处理方式。例如,通过使用%spark翻译器,可以在Zeppelin中使用Scala语言代码。...说明:这是一个动态表单SQL,SparkSQL语句为: %sql select * from wxy.t1 where rate > ${r} 第一行指定解释器为SparkSQL...,第二行用${r}指定一个运行时参数,执行时页面上会出现一个文本编辑框,输入参数后回车,查询会按照指定参数进行,如图会查询rate > 100的记录。...在Zeppelin中添加MySQL翻译器 数据可视化的需求很普遍,如果常用的如MySQL这样的关系数据库也能使用Zeppelin查询,并将结果图形化显示,那么就可以用一套统一的数据可视化方案处理大多数常用查询
目前,Apache Zeppelin支持许多解释器,如Apache Spark,Python,JDBC,Markdown和Shell。 添加新的语言后端是非常简单的。了解如何创建自己的解释器。...可视化不限于Spark SQL查询,任何语言后端的任何输出都可以被识别和可视化。 数据透视图 Apache Zeppelin聚合值,并通过简单的拖放将其显示在透视图中。...您可以轻松创建具有多个汇总值的图表,包括总和,数量,平均值,最小值,最大值。 详细了解Apache Zeppelin中的系统显示。...后端的简短漫步教程 基本功能指南 动态表单:创建动态表单的分步指南 将您的段落结果发布到您的外部网站 用您的笔记本电脑自定义Zeppelin主页 更多 升级Apache Zeppelin版本:升级...你如何在Apache Zeppelin中设置解释器?
四、若使用Spark SQL编写代码,那么最好不要将核心的SQL逻辑拆分成片段,这样会使可读性下降。对于有多段逻辑的Job,需要让代码更多的暴露出表操作的核心逻辑。...Spark cache是使用给定的存储级别来缓存表的内容或查询的输出内容,常用于未来查询中复用原始文件的场景。...二、DataFrame的 API 和Spark SQL中的 union 行为是不一致的,DataFrame中union默认不会进行去重,Spark SQL union 默认会进行去重。...需要注意的是开启动态分区会导致写入效率下降: 五、DataFrame中使用udf时,需要注意udf的参数如果是基础类型则必须不为空,否则不会被执行。...对于这种由于null值导致的逻辑不一样问题,可以借助DataFrameNaFunctions 来协助处理null值情况。 六、Spark原生不支持数据更改,所以对一些非分区表更新数据是有挑战的。
0 Shark Spark 的一个组件,用于大规模数据分析的 SQL 查询引擎。Shark 提供了一种基于 SQL 的交互式查询方式,可以让用户轻松地对大规模数据集进行查询和分析。...0.2 缺陷 Shark 在 Spark 1.0 发布之后被正式弃用,Shark 的性能和可扩展性相对于 Spark SQL 来说存在一些局限性。...还可使用命令行或通过JDBC/ODBC与SQL接口交互。 3 特性 3.1 集成性 Spark SQL可让你在Spark程序用SQL或熟悉的DataFrame API查询结构化数据。...可在Java、Scala、Python和R中使用。它可使SQL查询与Spark程序无缝混合。...对于包含空格的值,将“key=value”括在引号中(如图所示)。多个配置应作为单独的参数传递。
考虑到系统使用的广泛程度与成熟度,在具体举例时一般会拿Hive和Impala为例,当然在调研的过程中也会涉及到一些其他系统,如Spark SQL,Presto,TAJO等。...Spark系之所以放弃Shark另起炉灶做Spark SQL,很大一部分原因是想自己做优化策略,避免受Hive的限制,为此还专门独立出优化器组件Catalyst(当然Spark SQL目前还是非常新,其未来发展给人不少想象空间...具体实现来说,JVM系的如Spark SQL,Presto可以用反射,C++系的Impala则使用了llvm生成中间码。...footer提供读取stream的位置信息,以及更多的统计值如sum/count等。...Impala和Hive也支持查询hbase。Spark SQL也在1.2版本开始支持External Datasource。国内也有类似的工作,如秒针改造Impala使之能查询postgres。
领取专属 10元无门槛券
手把手带您无忧上云