首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

可视化绘制 | R-ggridges包峰峦图绘制

上次可视化系列说了瀑布图(可跳转)。它可以用于展示拥有相同的X轴变量数据(如相同的时间序列)、不同的Y轴离散型变量(如不同的类别变量)和Z轴数值变量。...本节使用的峰峦图也可以很好地展示瀑布图的数据信息。它们对于可视化随时间或空间分布的变化非常有用。本节主要使用ggridges包[1]中的geom_density_ridges()进行绘制峰峦图。...详细介绍如下: 1.数据结构 这里使用base包中的diamonds数据集做例子。...2.2形状变化 如果不想绘制密度图,则可以使用stat="binline", bins=20绘制柱形图,其中bins=20表示每格格子大小。...可以使用ggridges提供的特殊比例来设置抖动点的样式。scale_discrete_manual()可用于制作具有任意形状和比例的图形。

1.8K10

使用Matplotlib轻松搞定3D绘图

现在我们的轴已经创建好了,我们可以开始绘制3D。3D绘图库的用法与2D绘图基本一样。...在绘制3D图形后,我们可以交互的查看图形。只需要简单点击并拖动绘图结果即可。 ? ? 3D曲面图 曲面图可以很好地提供了一个完整的结构来查看每个变量的值如何在另外两个轴的轴上变化。...在Matplotlib中构建表面图是一个3个步骤的过程。 一、我们需要生成构成曲面图的实际点。注意生成3D曲面的所有点是不可能的,因为它们有无限个!...绘制条形图需要两个东西:位置和大小。 在3D条形图中,我们将选择z轴来表示高度; 因此,每个条形将从z = 0开始,其大小与我们试图可视化的值成比例。...x和y位置将表示横跨2D平面z = 0的条形坐标。我们将每个条形截面积都设置为1,使所有条形都具有相同的形状。

3.9K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【深度学习】 Python 和 NumPy 系列教程(二十):Matplotlib详解:2、3d绘图类型(6)3D向量场图(3D Vector Field Plot)

    它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。...Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...() ax = fig.add_subplot(111, projection='3d') # 绘制3D向量场图 ax.quiver(x_mesh, y_mesh, z_mesh, u, v, w)

    12610

    【深度学习】 Python 和 NumPy 系列教程(十七):Matplotlib详解:2、3d绘图类型(3)3D条形图(3D Bar Plot)

    Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...projection='3d') # 绘制3D条形图 ax.bar3d(x_mesh.flatten(), y_mesh.flatten(), np.zeros_like(z).flatten(),...通过使用np.meshgrid函数创建了一个二维网格,将x和y数组扩展为与z数组相同的维度。 创建了一个3D图形对象,并将其添加到子图中。 使用ax.bar3d函数绘制了3D条形图。

    13410

    【深度学习】 Python 和 NumPy 系列教程(十五):Matplotlib详解:2、3d绘图类型(1):线框图(Wireframe Plot)

    Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...plt.show() 生成了x轴和y轴的坐标点 使用np.meshgrid函数生成网格点坐标,再根据坐标计算出对应的z轴坐标。...创建了一个三维坐标系,并使用ax.plot_wireframe函数绘制线框图,该函数接受三个参数:X、Y和Z,分别表示网格点的x、y、z坐标。

    9310

    【深度学习】 Python 和 NumPy 系列教程(十六):Matplotlib详解:2、3d绘图类型(2)3D散点图(3D Scatter Plot)

    Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...(100) # y轴数据 z = np.random.rand(100) # z轴数据 colors = np.random.rand(100) # 颜色数据 # 创建3D图形对象 fig =...plt.figure() ax = fig.add_subplot(111, projection='3d') # 绘制3D散点图 ax.scatter(x, y, z, c=colors, cmap

    10710

    【深度学习】 Python 和 NumPy 系列教程(十九):Matplotlib详解:2、3d绘图类型(5)3D等高线图(3D Contour Plot)

    它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。...Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...使用ax.set_xlabel、ax.set_ylabel和ax.set_zlabel函数设置了坐标轴的标签。 运行示例代码后,将看到一个3D等高线图,其中等高线的位置和形状由z数组确定。

    13710

    【深度学习】 Python 和 NumPy 系列教程(廿一):Matplotlib详解:2、3d绘图类型(7)3D表面投影图(3D Surface Projection Plot)

    它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。...Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...() ax = fig.add_subplot(111, projection='3d') # 绘制3D表面投影图 ax.plot_surface(x_mesh, y_mesh, z, cmap='viridis...x_mesh、y_mesh和z参数分别表示表面投影图的位置和对应的z轴数据。 cmap='viridis'参数指定了使用viridis颜色映射方案来表示表面的颜色。

    11210

    【深度学习】 Python 和 NumPy 系列教程(十八):Matplotlib详解:2、3d绘图类型(4)3D曲面图(3D Surface Plot)

    Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...() ax = fig.add_subplot(111, projection='3d') # 绘制3D曲面图 ax.plot_surface(x_mesh, y_mesh, z, cmap='viridis...使用ax.plot_surface函数绘制了3D曲面图 x_mesh、y_mesh和z参数分别表示曲面图的x、y和z坐标数据。

    11410

    一篇文章学会Matplotlib

    ='3d'参数告诉Matplotlib要创建3D图像 # 生成X、Y的等间隔数字,并根据它们的组合生成Z x = np.linspace(-1, 1, 100) # 生成等间隔数字-1到1,共100...Z = np.sin(np.sqrt(X**2 + Y**2)) # 根据X和Y数组生成Z数组 # 在3D坐标系中绘制3D曲面 ax.plot_surface(X, Y, Z, cmap=plt.cm.Blues...使用’np.meshgrid()'生成相应的网格,并在采用sin()函数计算定义的图形Z值,最后绘制三维曲面并为其添加轴标签。...绘制多个子图 import numpy as np import matplotlib.pyplot as plt # 生成一些示例数据 x = np.linspace(0, 10, 100) #创建线性空间数组...Subplots') #用suptitle()函数为整个图表添加一个标题 plt.show() #显示图表 通过上面定义的subplots()函数和sharex = True 参数,可以创建具有多个子图的

    7910

    【深度学习】 Python 和 NumPy 系列教程(十四):Matplotlib详解:1、2d绘图(下):箱线图、热力图、面积图、等高线图、极坐标图

    它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。...Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。...下面是Matplotlib的一些主要功能: 绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...通过对坐标点进行某种运算,生成了对应的二维数据。 使用plt.contour(X, Y, Z)绘制等高线图,其中X和Y表示坐标点的网格,Z表示对应位置的数据值。 10.

    16610

    Excel-R-Python: 峰峦图的实现

    《R语言数据可视化之美》中详细介绍了各种峰峦图的绘制方法。其中关于R-ggridges包的问题1今天有了新的认识,并做修正奉献给大家。...ggridges包有一个很惊艳的函数geom_density_ridges_gradient()可以绘制多数据系列的核密度估计图,如下图所示: 在这个函数中,fill的颜色还可以以x轴的数值作为映射,...如下图所示: 新书《Python数据可视化之美》也介绍了这种图的绘制方法,joypy 包提供了joyplot()函数,它根据数据可以直接绘制不同颜色的核密度估计峰峦图,其具体代码如下: import...图表风格的自动转换;2. 颜色主题的自动转换;3. 新型图表的自动绘制;4. 数据分析的自动实现;5....新插件可以轻松绘制矩阵气泡图,一键生成的效果如下图所示: 我们即将推出的Excel插件EasyCharts 1.0的升级版-EasyShu,也可以一键绘制峰峦图,其效果图如下所示。

    1.7K10

    基于Matplotlib的高级数据可视化技术与实践探索

    Matplotlib简介Matplotlib是一个强大的绘图库,能够生成各种类型的图表和图形。它支持多种输出格式,如PNG、PDF、SVG等,并能够与多个GUI工具包集成。...高级自定义:多子图和共享轴有时我们需要在同一图形中显示多个子图,或共享坐标轴。Matplotlib允许我们轻松实现这些需求。...使用子图和轴的复杂布局有时,我们需要将多个图表放在一个复杂的布局中。Matplotlib允许用户通过GridSpec和subplot2grid来实现灵活的布局配置。...制作带有多个图层的图表在某些情况下,你可能需要在同一个图表上绘制多个图层,比如绘制不同类型的数据系列或叠加多个图形。...制作具有图层透明度的图表图层透明度可以帮助你在图表中显示多个重叠的数据系列,而不影响数据的可读性。

    19520

    30行Python代码实现3D数据可视化

    之前我们基本都是用它来绘制二维的数据图表。而今天文章中,我们将教大家如何用不到 30 行代码绘制 Matplotlib 3D 图形。 回顾 2D 作图 用赛贝尔曲线作 2d 图。...绘制 3D 图可以通过创建子图,然后指定 projection 参数 为 3d 即可,返回的 ax 为 Axes3D 对象。...y 轴坐标 zs 一维数组,可选项,点的 z 轴坐标 zdir 可选项,在 3D 轴上绘制 2D 数据时,数据必须以 xs,ys 的形式传递,若此时将 zdir 设置为 ‘y’,数据将会被绘制到 x-z..., **kwargs]) 参数详解: 参数 描述 xs 一维数组,点的 x 轴坐标 ys 一维数组,点的 y 轴坐标 zs 一维数组,可选项,点的 z 轴坐标 zdir 可选项,在 3D 轴上绘制 2D...数据时,数据必须以 xs,ys 的形式传递,若此时将 zdir 设置为 ‘y’,数据将会被绘制到 x-z 轴平面上,默认为 ‘z’ s 标量或数组类型,可选项,标记的大小,默认 20 c 标记的颜色,

    4K21

    2D – 3D 和 4 轴加工零件之间的差异

    因为 2.5/2D 是一个术语,所以本书使用棱柱形和 2D 来描述具有三个可控轴 (XYZ) 的 CNC 铣床上的零件。XY 轴垂直于机床主轴,Z 轴仅用于将刀具定位到深度(进给或快速运动)。...图 1 显示了一个棱柱形零件。所有加工特征均平行于 XY 平面。通过将刀具定位在固定的 Z 轴,然后移动 XY 轴以去除材料,可以加工每个 Z 轴。加工。...图 1:棱柱形零件(CAD 中的方向) 实体零件 3D 指的是非棱柱形零件,包括模具和复杂的形状。例如,大多数零件都包含 3D 特征。图 3 显示了半个冲压模具。...图 3:3D 部分 4轴零件 第 4 轴刀具路径需要安装在 CNC 机床上的第 4 辅助旋转轴,与 X 轴或 Y 轴平行。第 4 轴刀具路径分为两类:第 4 轴替换和同步第 4 轴。...图 4:第 4 轴替换 (XA) 同时第 4 轴加工允许所有 4 个轴同时移动 (XYZA)。这种类型的运动非常复杂,实际上是联动 5 轴加工的一个子类别。

    66610

    使用 Matplotlib 在 Python 中进行三维绘图

    使用 Matplotlib 在 Python 中进行三维绘图 3D 图是可视化具有三个维度的数据(例如具有两个因变量和一个自变量的数据)的非常重要的工具。...通过在 3D 图中绘制数据,我们可以更深入地了解具有三个变量的数据。我们可以使用各种 matplotlib 库函数来绘制 3D 绘图。...使用 Matplotlib 进行三维绘图的示例 我们首先使用Matplotlib库绘制 3D 轴。为了绘制 3D 轴,我们只需将plt.axes()的投影参数从 None 更改为 3D。...) 输出: 使用 matplotlib 绘制 3D 轴 使用上述语法,启用三维轴,并且可以在 3 个维度上绘制数据。...使用 Matplotlib绘制 3 维线图 为了绘制 3 维线图,我们将使用 mpl_toolkits 库中的 mplot3d 函数。为了在 3D 中绘制直线,我们必须为直线方程初始化三个变量点。

    3.5K30
    领券