首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

开源 | 基于Metal的机器学习框架Bender:可在iOS上运行TensorFlow模型

选自GitHub 机器之心编译 参与:吴攀 在正在举行的 WWDC 2017 上,苹果宣布发布了 Metal 2,详情可参阅机器之心的报道《苹果开发者大会 WWDC 2017:首次全面展示苹果的人工智能实力...在人工智能领域,人们对在移动设备上执行神经网络的兴趣越来越大,即便其训练过程是预先在其它地方完成的。我们希望人们能更轻松地在 iOS 上运行预训练的网络。...我们希望能加载在 TensorFlow 或 Caffe2 等框架上训练好的模型。...我们还发现我们需要将使用 TensorFlow 训练的模型翻译成 iOS 上可用,为此我们需要编写脚本,使之可以将权重转换成 MPSCNN 格式,并将 TensorFlow 的层中不同类型的参数映射成...TensorFlow 可以为 iOS 进行编译,但目前它并不支持在 GPU 上运行,而这却正是我们需要的。我们也并不想将 TensorFlow 的静态库包含在我们的项目中。

1.2K90

机器学习必知的 10 个 Python 库

这意味着它具有模块性,可以让你把希望独立出来的部分分出来 3.容易训练 对于分布式计算来说,它很容易在 CPU 和 GPU 上训练。...4.并行神经网络训练 TensorFlow 提供了管道流,从这个意义上说,你可以训练多个神经网络和多个 GPU,这使得模型在大型系统上非常有效。...Keras 的特征 它在 CPU 和 GPU 上都能顺利运行。 Keras 支持几乎所有的神经网络模型——全连接、卷积、池化、循环、嵌入等。此外,这些模型可以结合起来构建更复杂的模型。...Keras 本质上是模块化的,具有难以置信的表现力、灵活性和创新性研究的能力。 Keras 是一个完全基于 python 的框架,它使调试和探索变得容易。 Keras 被用在哪里?...高效地使用 GPU:比 CPU 执行数据密集型计算要快得多 有效的符号区分:Theano 为具有一个或多个输入的函数求导数 速度和稳定性优化:即使在 x 非常小的情况下,也能求出 log(1+x)的正确答案

2.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TensorFlow 2.9上线:oneDNN改进实现CPU性能优化,WSL2开箱即用

    TensorFlow 2.9 新特性 提高 CPU 性能:oneDNN TensorFlow 已经与英特尔合作,将 oneDNN 性能库与 TensorFlow 集成,以实现在英特尔 CPU 上的最高性能...在 TensorFlow 2.9 中,默认在 Linux x86 包和具有神经网络硬件功能(如 AVX512_VNNI、AVX512_BF16、AMX 等)的 CPU 上启用 oneDNN 优化,这些功能可在...DTensor 的核心设计原则如下: 设备无关 API:这允许在 CPU、GPU 或 TPU 上使用相同的模型代码,包括跨设备类型划分的模型; 多客户端执行:移除 coordinator 并让每个任务驱动其本地连接的设备...支持 WSL2 WSL2 允许开发人员直接在 Windows 上运行 Linux 环境,而不需要传统虚拟机或双启动设置。TensorFlow 现在支持 WSL2 开箱即用,包括 GPU 加速。...第二行使每个 TensorFlow op 具有确定性。请注意,确定性通常是以降低性能为代价的,因此当启用 op 确定性时,你的模型可能会运行得更慢。

    1.5K20

    2019必学的10大顶级Python库!

    这意味着它具有模块性,可以让你把希望独立出来的部分分出来 3.容易训练 对于分布式计算来说,它很容易在 CPU 和 GPU 上训练。...4.并行神经网络训练 TensorFlow 提供了管道流,从这个意义上说,你可以训练多个神经网络和多个 GPU,这使得模型在大型系统上非常有效。...Keras 的特征 它在 CPU 和 GPU 上都能顺利运行。 Keras 支持几乎所有的神经网络模型——全连接、卷积、池化、循环、嵌入等。此外,这些模型可以结合起来构建更复杂的模型。...Keras 本质上是模块化的,具有难以置信的表现力、灵活性和创新性研究的能力。 Keras 是一个完全基于 python 的框架,它使调试和探索变得容易。 Keras 被用在哪里?...Theano 的特点 与 Numpy 紧密集成:能够在无编译函数中使用完整的 Numpy 数组 高效地使用 GPU:比 CPU 执行数据密集型计算要快得多 有效的符号区分:Theano 为具有一个或多个输入的函数求导数

    69620

    2019必学的10大顶级Python库!

    这意味着它具有模块性,可以让你把希望独立出来的部分分出来 3.容易训练 对于分布式计算来说,它很容易在 CPU 和 GPU 上训练。...4.并行神经网络训练 TensorFlow 提供了管道流,从这个意义上说,你可以训练多个神经网络和多个 GPU,这使得模型在大型系统上非常有效。...Keras 的特征 它在 CPU 和 GPU 上都能顺利运行。 Keras 支持几乎所有的神经网络模型——全连接、卷积、池化、循环、嵌入等。此外,这些模型可以结合起来构建更复杂的模型。...Keras 本质上是模块化的,具有难以置信的表现力、灵活性和创新性研究的能力。 Keras 是一个完全基于 python 的框架,它使调试和探索变得容易。 Keras 被用在哪里?...Theano 的特点 与 Numpy 紧密集成:能够在无编译函数中使用完整的 Numpy 数组 高效地使用 GPU:比 CPU 执行数据密集型计算要快得多 有效的符号区分:Theano 为具有一个或多个输入的函数求导数

    74400

    2021十大 Python 机器学习库

    易于训练 它很容易在 CPU 和 GPU 上进行训练以进行分布式计算 并行神经网络训练 从某种意义上说,TensorFlow 提供了流水线,我们可以在多个 GPU 上训练多个神经网络,这使得模型在大规模系统上非常高效...Keras 还提供了一些用于编译模型、处理数据集、图形可视化等最佳实用程序 在后端,Keras 在内部使用 Theano 或 TensorFlow。也可以使用一些最流行的神经网络,如 CNTK。...Keras 中的所有模型都是可移植的 Keras 的特点 支持 CPU 和 GPU 它可以在 CPU 和 GPU 上流畅运行 模型全面 Keras 支持神经网络的几乎所有模型——全连接、卷积、池化、循环...此外,这些模型可以组合起来构建更复杂的模型 模块化 Keras 本质上是模块化的,具有令人难以置信的表现力、灵活性和创新性研究能力 完全基于 Python Keras 是一个完全基于 Python 的框架...的特点 与 NumPy 紧密集成 能够在 Theano 编译的函数中使用完整的 NumPy 数组 高效的使用 GPU 执行数据密集型计算的速度比在 CPU 上快得多 高效的符号微分 Theano 可以为具有一个或多个输入的函数求导

    72810

    推荐几款很流行的面向 Javascript 的机器学习库

    您可以运行当前可用的默认 TensorFlow 模型,甚至可以将它们转换为一些 python 模型作为附加。...此外,TensorFlow.js 具有高度并行性,可与众多后端软件(如 ASIC、GPU 等)结合使用。...许多开发人员使用这个库来开发、实践和训练深度学习和机器学习模型,然后将它们部署在 Web 浏览器或带有 JS 脚本的 Node.js 上。...它在使用神经网络库的开发人员中非常流行。由于 Keras 使用多个框架作为后端,你可以在 CNTK、TensorFlow 和其他框架中训练模型。...使用 Keras 构建的机器学习模型可以在浏览器中运行。尽管模型也可以在 Node.js 中运行,但只有 CPU 模式可用。不会有 GPU 加速。

    1.7K30

    十大 Python 机器学习库

    易于训练 它很容易在 CPU 和 GPU 上进行训练以进行分布式计算 并行神经网络训练 从某种意义上说,TensorFlow 提供了流水线,我们可以在多个 GPU 上训练多个神经网络,这使得模型在大规模系统上非常高效...Keras 还提供了一些用于编译模型、处理数据集、图形可视化等最佳实用程序 在后端,Keras 在内部使用 Theano 或 TensorFlow。也可以使用一些最流行的神经网络,如 CNTK。...Keras 中的所有模型都是可移植的 Keras 的特点 支持 CPU 和 GPU 它可以在 CPU 和 GPU 上流畅运行 模型全面 Keras 支持神经网络的几乎所有模型——全连接、卷积、池化、循环...此外,这些模型可以组合起来构建更复杂的模型 模块化 Keras 本质上是模块化的,具有令人难以置信的表现力、灵活性和创新性研究能力 完全基于 Python Keras 是一个完全基于 Python 的框架...的特点 与 NumPy 紧密集成 能够在 Theano 编译的函数中使用完整的 NumPy 数组 高效的使用 GPU 执行数据密集型计算的速度比在 CPU 上快得多 高效的符号微分 Theano 可以为具有一个或多个输入的函数求导

    1.2K10

    事实胜于雄辩,苹果MacOs能不能玩儿机器深度(mldl)学习(Python3.10Tensorflow2)

    现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹果MacOS系统上安装和配置...使用tensorflow-metal可以显著提高在苹果设备上运行TensorFlow的性能,尤其是在使用Macs M1和M2等基于苹果芯片的设备时。...GPU或图形处理单元与CPU类似,同样具有许多核心,允许它们同时进行更快的计算(并行性)。这个特性非常适合执行大规模的数学计算,如计算图像矩阵、计算特征值、行列式等等。    ...-n1表示只运行一次,-r1表示只运行一轮。如果没有指定这些参数,则会运行多次并计算平均值。/CPU:0指的是第一个CPU(如果计算机只有一个CPU,则是唯一的CPU)。    ...CPU上训练模型更快,因为GPU可以同时处理多个任务。

    99320

    主流深度学习框架对比:必定有一款适合你!

    现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和机器人等方面...TensorFlow 是谷歌发布的第二代机器学习系统。据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多。...这种灵活的架构可以让使用者在多样化的将计算部署在台式机、服务器或者移动设备的一个或多个CPU上,而且无需重写代码;同时任一基于梯度的机器学习算法均可够借鉴TensorFlow的自动分化(Auto-differentiation...Keras Keras是极其精简并高度模块化的神经网络库,在TensorFlow 或 Theano 上都能够运行,是一个高度模块化的神经网络库,支持GPU和CPU运算。...); -可在CPU 和 GPU 上无缝运行。

    1.9K90

    TensorFlow 2.9上线:oneDNN改进实现CPU性能优化,WSL2开箱即用

    TensorFlow 2.9 新特性 提高 CPU 性能:oneDNN TensorFlow 已经与英特尔合作,将 oneDNN 性能库与 TensorFlow 集成,以实现在英特尔 CPU 上的最高性能...在 TensorFlow 2.9 中,默认在 Linux x86 包和具有神经网络硬件功能(如 AVX512_VNNI、AVX512_BF16、AMX 等)的 CPU 上启用 oneDNN 优化,这些功能可在...DTensor 的核心设计原则如下: 设备无关 API:这允许在 CPU、GPU 或 TPU 上使用相同的模型代码,包括跨设备类型划分的模型; 多客户端执行:移除 coordinator 并让每个任务驱动其本地连接的设备...支持 WSL2 WSL2 允许开发人员直接在 Windows 上运行 Linux 环境,而不需要传统虚拟机或双启动设置。TensorFlow 现在支持 WSL2 开箱即用,包括 GPU 加速。...第二行使每个 TensorFlow op 具有确定性。请注意,确定性通常是以降低性能为代价的,因此当启用 op 确定性时,你的模型可能会运行得更慢。

    1.4K20

    业界 | TensorFlow 2.0 Alpha 版来了!吴恩达配套课程同步上线

    eager execution 进行运行和调试;再使用 Distribution Strategy API 在不更改模型定义的情况下,基于 CPU、GPU 等不同硬件配置上分布和训练模型;最后将模型导出到...此外,TensorFlow 2.0 Alpha 版还带来了一些新的功能,允许研究人员和高级用户使用丰富的扩展进行实验,如 Ragged Tensors、TensorFlow Probability、Tensor2Tensor...该课程从实践的角度讲解了软件深度学习知识,以及在移动设备、云端和浏览器上实际运行 TensorFlow 模型,让学生掌握创建 AI 应用所需的所有技能。...它采用一种联合学习(Federated Learning,FL)的机器学习方法,可在多个客户端上训练共享的全局模型,同时在本地保存训练数据。...TensorFlow Privacy 则是一个 TensorFlow 机器学习开源库,能够让开发人员更容易培训具有强大隐私保障的 AI 模型。

    1.1K10

    2019 必知的 10 大顶级 Python 库

    容易训练 对于分布式计算来说,它很容易在 CPU 和 GPU 上训练。 4....并行神经网络训练 TensorFlow 提供了管道流,从这个意义上说,你可以训练多个神经网络和多个 GPU,这使得模型在大型系统上非常有效。 5....Keras 的所有模型都很轻简。 Keras 的特征 它在 CPU 和 GPU 上都能顺利运行。 Keras 支持几乎所有的神经网络模型——全连接、卷积、池化、循环、嵌入等。...此外,这些模型可以结合起来构建更复杂的模型。 Keras 本质上是模块化的,具有难以置信的表现力、灵活性和创新性研究的能力。...Theano 的特点 与 Numpy 紧密集成——能够在无编译函数中使用完整的 Numpy 数组 高效地使用 GPU——比 CPU 执行数据密集型计算要快得多 有效的符号区分——Theano 为具有一个或多个输入的函数求导数

    83830

    了解机器学习深度学习常用的框架、工具

    Keras 3.0 是对 Keras 代码库的全新重构,可以在 JAX、TensorFlow 和 PyTorch 上运行,为大型模型的训练和部署提供了全新功能。...Keras 3.0 的基本信息和特性 多框架支持:Keras 3.0 支持在 JAX、TensorFlow 和 PyTorch 上运行,包括一百多个层、数十种度量标准、损失函数、优化器和回调函数。...不足: 运行速度:由于 Keras 是在 TensorFlow 的基础上再次封装的,因此运行速度可能没有 TensorFlow 快。...PyCaret 本质上是围绕多个机器学习库和框架(如 scikit-learn、XGBoost、LightGBM、CatBoost、spaCy、Optuna、Hyperopt、Ray 等)的 Python...它是一个跨平台的机器学习模型加速器,具有灵活的接口,可以集成硬件特定的库。 ONNX Runtime 的基本信息和特性 ONNX Runtime 是一个异构模型运行框架。

    1.6K01

    使用 TensorFlow 进行分布式训练

    概述 Tf.distribute.Strategy 是一个可在多个 GPU、多台机器或 TPU 上进行分布式训练的 TensorFlow API。...在本指南中,我们将介绍各种类型的策略,以及如何在不同情况下使用它们。 2. 策略类型 Tf.distribute.Strategy 打算涵盖不同轴上的许多用例。...硬件平台:您可能需要将训练扩展到一台机器上的多个 GPU 或一个网络中的多台机器(每台机器拥有 0 个或多个 GPU),或扩展到 Cloud TPU 上。...变量不会被镜像,而是统一放在 CPU 上,模型和运算会复制到所有本地 GPU(这属于 in-graph 复制,就是一个计算图覆盖了多个模型副本)。...1,))]) model.compile(loss='mse', optimizer='sgd') 在此示例中我们使用了 MirroredStrategy,因此我们可以在有多个 GPU 的机器上运行。

    1.5K20

    收藏 | 2021 十大机器学习库

    并行神经网络训练:从某种意义上说,TensorFlow 提供了流水线,我们可以在多个 GPU 上训练多个神经网络,这使得模型在大规模系统上非常高效。...在这个库中进行了很多优化改动,其中一项是交叉验证功能,提供了使用多个指标的能力。许多训练方法,如逻辑回归和最近邻,都得到了一些小的改进与优化。 2....Keras 还提供了一些用于编译模型、处理数据集、图形可视化等最佳实用程序。 在后端,Keras 在内部使用 Theano 或 TensorFlow。也可以使用一些最流行的神经网络,如 CNTK。...Keras 的特点 支持 CPU 和 GPU:它可以在 CPU 和 GPU 上流畅运行。 模型全面:Keras 支持神经网络的几乎所有模型——全连接、卷积、池化、循环、嵌入等。...此外,这些模型可以组合起来构建更复杂的模型。 模块化:Keras 本质上是模块化的,具有令人难以置信的表现力、灵活性和创新性研究能力。

    82010

    Keras 3.0一统江湖!大更新整合PyTorch、JAX,全球250万开发者在用了

    全新的Keras 3对Keras代码库进行了完全重写,可以在JAX、TensorFlow和PyTorch上运行,能够解锁全新大模型训练和部署的新功能。...在 JAX、TensorFlow 和 PyTorch 上运行 Keras 使用 XLA 编译更快地训练 通过新的 Keras 分发 API 解锁任意数量的设备和主机的训练运行 它现在在 PyPI 上上线...再次让Keras成为多后端 最初的Keras可以在Theano、TensorFlow、CNTK,甚至MXNet上运行。...- 始终为模型获得最佳性能。 在基准测试中,发现JAX通常在GPU、TPU和CPU上提供最佳的训练和推理性能,但结果因模型而异,因为非XLA TensorFlow在GPU上偶尔会更快。...Model类与函数式API一起使用,提供了比Sequential更大的灵活性。它专为更复杂的架构而设计,包括具有多个输入或输出、共享层和非线性拓扑的模型。

    32610

    2017 深度学习框架发展大盘点——迎来 PyTorch,告别 Theano

    ,Caffe2 和 TensorFlow Lite 先后开源 接下来,我们会盘点上述机器学习框架之间的重大发展和改变,以飨读者。...这对不支持 Python 的调度栈来说至关重要。理论上,在改变模型源代码之后,你想要运行旧模型时它也能有所帮助。...大家可以把它理解为一个数学表达式的编译器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于 GPU 或 CPU。...而在 2017 年 8 月,Keras 又做了如下几点更新:修复漏洞,性能提升,文件改善,为在 TensorFlow 的数据张量(比如 Datasets, TFRecords)上训练模型提供了更好的支持...CPU 来执行,它目前支持很多针对移动端训练和优化好的模型,如 MobileNet,Inception v3,Smart Reply。

    1.2K60

    Keras学习笔记(六)——如何在 GPU 上运行 Keras?以及如何在多 GPU 上运行 Keras 模型?,Keras会不会自动使用GPU?

    如何在 GPU 上运行 Keras? 如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。...= 'gpu' theano.config.floatX = 'float32' 如何在多 GPU 上运行 Keras 模型?...我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。 在大多数情况下,你最需要的是数据并行。...# 假定你的机器有 8 个可用的 GPU。...对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。 这种并行可以通过使用 TensorFlow device scopes 来实现。

    3.2K20

    深度学习(二)框架与工具:开启智能未来之门(210)

    此外,TensorFlow 支持多种硬件和操作系统,包括 CPU、GPU 和 TPU,以及 Windows、Linux 和 macOS 等,具有很强的跨平台性。...TensorFlow 的优势在于可扩展性强,既可以在单个 CPU 或 GPU 上运行,也能在多个节点的分布式系统上进行并行计算,处理大规模的数据和复杂的模型。...跨平台支持使得 TensorFlow 可以在多种操作系统上运行,包括 Linux、Windows 和 macOS,并且可以在多种编程语言中使用,如 Python、C++ 和 Java。...多后端支持包括 TensorFlow、Theano 和 CNTK 等,使其可以在各种设备上运行并根据需要进行优化。快速原型功能让用户能在短时间内构建和测试深度学习模型。...Netron:是专门为神经网络、深度学习和机器学习模型设计的查看器。支持 Keras、TensorFlow lite、ONNX、Caffe,并对 PyTorch、TensorFlow 有实验性支持。

    13610
    领券