函数中; na.rm:bool类型的参数,在剔除绘图数据中的缺失值时,是否不返回警告信息,默认为FALSE; show.legend:bool类型的参数,是否显示条形图的图例信息,默认为NA,即表示显示图例...;如果设置为FALSE,则不显示任何图例;如果设置为TRUE,则显示图例; inherit.aes:bool类型的参数,绘图时是否延用ggplot函数中的数据和轴属性,默认为TRUE;根据作者的经验,如果...ggplot函数中的数据与geom_*函数中的数据存在冲突时,可以将该参数设置为FALSE; 为使读者进一步理解和掌握上面所介绍的函数,接下来利用如上的geom_bar绘制几种常见的条形图。...如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...= aes(x = name, y = sales, fill = factor(is_done)), width = 0.6, stat = 'identity') + # 修改图例值
然后,我们可以通过单击图表的一个角并拖动角以更改尺寸来调整图表的大小,使其变小(或变大)。为了确保长宽比(即长宽比)不变 ,在拖动角时按住Shift键很重要 。...接下来,我们描述要对图表进行的一系列修改。 标有收入的图例不是特别有用,因此我们通过单击图表并选择布局>标签|图例>无来消除它 。...所有这些修改的结果如图4所示。 ? 图4 –折线图(修订后的视图) 散点图 散点图只是一系列数据元素对的图表,其中第一个数据元素对应于x轴,第二个数据元素对应于y轴。...突出显示范围B4:C9并选择 Insert> Charts | Scatter, 然后像在前面的示例中所做的那样修改标题,以生成图5所示的图表。 ?...在对标题进行通常的修改之后,您将获得如图8所示的步骤图。 ? 图8 –步骤图
(如标题,图例,色彩,轴等),以及嵌套的子图; The whole figure....index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 #画第一个条形图 rects1 = plt.bar(index, #定义第一个条形图的...定义第一个条形图的X坐标信息 means_frank, #定义第一个条形图的Y轴信息 bar_width, #定义条形图的宽度...index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 #画第一个条形图 rects1 = plt.bar(index, #定义第一个条形图的...', label = '张三') #定义第一个条形图的标签信息 #画第二个条形图 rects2 = plt.bar(index, # 与第一个条形图在X周上无缝“
然后,我们可以通过单击图表的一个角并拖动角以更改尺寸来调整图表的大小,使其变小(或变大)。为了确保长宽比(即长宽比)不变 ,在拖动角时按住Shift键很重要 。...接下来,我们描述要对图表进行的一系列修改。 标有收入的图例不是特别有用,因此我们通过单击图表并选择布局>标签|图例>无来消除它 。...所有这些修改的结果如图4所示。 图4 –折线图(修订后的视图) 散点图 散点图只是一系列数据元素对的图表,其中第一个数据元素对应于x轴,第二个数据元素对应于y轴。...突出显示范围B4:C9并选择 Insert> Charts | Scatter, 然后像在前面的示例中所做的那样修改标题,以生成图5所示的图表。...在对标题进行通常的修改之后,您将获得如图8所示的步骤图。 图8 –步骤图
当使用 Python 画条形图时,通常会使用 Matplotlib 库。Matplotlib 是一个广泛用于绘制图表和数据可视化的库,它提供了丰富的函数和方法来创建各种类型的图表,包括条形图。...灵活性:Matplotlib 允许用户对图表进行高度定制,包括设置标题、标签、刻度线、线型、颜色、图例等等。...多种图表类型:Matplotlib 支持众多常见的图表类型,如折线图、散点图、条形图、饼图、直方图、盒图等等。...plt.bar 函数的第一个参数是类别列表 categories,第二个参数是对应的数值列表 values,通过这两个参数可以指定条形图的类别和高度。...使用 plt.show() 显示生成的条形图。这个函数会打开一个窗口显示图表,你可以对图表进行交互操作,如放大、保存为图片等。
▲图1 散点图 02 条形图 条形图是用宽度相同的条形的高度或长度来表示数据多少的图形。条形图可以横置或纵置,纵置时也称为柱状图。此外,条形图有简单条形图、复式条形图等形式。...条形图的主要参数及各参数说明如下。...在构建直方图时,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。这些值通常被指定为连续的、不重叠的变量间隔,间隔必须相邻,并且通常是相等的大小。...Y轴刻度(调节ylim将会影响所有的subplot) subplot_kw:用于创建各subplot的关键字字典 **fig_kw:创建figure时的其他关键字,如plt.subplots(3,3,figsize...▲图9 组合图 利用figure的subplot_adjust方法可以轻易地修改间距,其中wspace和hspace分别用于控制宽度和高度的百分比,可以用作subplot之间的间距。
几何对象是用以呈现数据的几何图形对象,如条形、线条和点。 图形属性是几何对象的视觉属性,如x坐标和y坐标、线条颜色、点的形状等。 数值的值和图形属性之间存在着某类映射。...最常见的元素是坐标轴上的刻度线和标签(还有图例)。 接下来以三个数据集解释ggplot2的使用。第一个是lattice包中的singer数据集,它包括纽约合唱团歌手的高度和语音变量。...用几何函数指定图的类型 ggplot()函数指定要绘制的数据源和变量,几何函数则指定这些变量如何在视觉上进行表示。目前,有37个几何函数可供使用。以下列出常用的函数。...Faculty Salary by Rank and Sex.png 图例 图例是指如何用颜色、形状、尺寸等视觉特征表示数据特征的指南。标题和位置是最常用的定制特征。...当更改图例的标题时,必须综合考虑颜色、填充、尺寸等等。可以通过fill="mytitle"加到labs()函数中来改变标题。 标题的位置由theme()函数中的legen.position选项控制。
Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。...而且由于应用不同,我们不知道选择哪一个图例,比如直方图,饼状图,曲线图等等。这里有一个很棒的思维导图,可以帮助您为工作选择正确的可视化效果: ?...我们对于这张思维导图中的主要图例做一些解释: 散点图 散点图非常适合显示两个变量之间的关系,因为您可以直接看到数据的原始分布。您还可以通过如下图所示的对组进行颜色编码来查看不同数据组的这种关系。 ?...想要可视化三个变量之间的关系吗?!完全没有异议只需使用另一个参数(如点大小)对第三个变量进行编码,如下面的第二个图所示,我们把这个图叫做冒泡图。 ?...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。
,包括平台、线框图、散点图和条形图。...Streamplot streamplot()函数绘制向量场的流线图。 除了简单地绘制流线之外,它还允许将流线的颜色和/或线宽映射到单独的参数,例如向量场的速度或局部密度。...源代码 条形图 使用bar()命令创建条形图十分容易,其中包括一些定制(如误差条): 源代码 创建堆叠条(bar_stacked.py),蜡烛条(finance_demo.py)和水平条形图(barh_demo.py...此示例展示了如何在直角投影上绘制轮廓,标记和文本,以 NASA 的“蓝色大理石”卫星图像作为背景。...源代码 图例 legend()命令使用 MATLAB 兼容的图例布局命令自动生成图形图例。 源代码 感谢 Charles Twardy 编写了图例命令的输入。
接下来再对这张图进行修饰即可,观察Fig.1A,知道应该做如隐藏x,y轴、移除多余的图形元素、将value值标注在对应的色块中并且居中排列、将图例放在图的下方按照两列排列并隐藏图例名称、图例外有黑边包边...color = "black")+ theme(legend.position = "bottom", legend.title = element_blank()) + # 隐藏图例标题...具体来说: position_stack:这是一个位置调整函数,用于在堆叠的条形图或饼图中调整元素的位置。对于堆叠的条形图,它将标签按照条形的高度依次堆叠。...在饼图中,position_stack(vjust = 0.5)用于将标签(如百分比)放置在每个饼图扇形区域的中间位置,从而使得标签更清晰地显示在每个部分的中心。.../results/Figure 1A.pdf') 其中如何在饼图外加分组名称暂未研究明白。
数据可视化是捕捉趋势和分享从数据中获得的见解的非常有效的方式,流行的可视化工具有很多,它们各具特色,但是在今天的文章中,我们将学习使用 Pandas 进行绘图。...%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...六边形图 当数据非常密集时,六边形 bin 图(也称为 hexbin 图)可以替代散点图。换句话说,当数据点的数量很大,并且每个数据点不能单独绘制时,最好使用这种以蜂窝形式表示数据的绘图。
您的受众对数据可视化的熟悉程度是多少? 如果他们都是些数据可视化的新手,我们其实可以使用传统图表(如饼图,条形图和折线图),这种时候,传统图表胜过一切花里胡哨的专业性图表。...例如,依赖于角度和面积来显示差异的图表(如饼图)用于传达一般模式。依靠长度显示差异的图表(如条形图)用于传达特定的细节。 7. 需要多少个小数位? 一个相关的决定是数据标签的精确度。...(图源 推特Post Graphics) 步骤2:选择正确的图表 这个就需要我们花费时间把大致的所有可视化图表类型都做一个了解,比如:折线图,条形图和柱形图表示随时间的变化。金字塔和饼图显示整个部分。...柱形图上的每一条是垂直的,而条形图上的每一条是水平的。当一个数据标签很长或要比较的项目超过10个时,通常用条形图来帮助避免混乱。这两种图标都很易于理解并创建。...哪怕是框线颜色的修改,都是我们需要考虑的问题,上图非常直观地给我们带来了颜色不一产生的视觉效果差别,深色的背景配合白色的框线才能突出我们想要表达的信息。
图1 散点图 条形图 条形图是用宽度相同的条形的高度或长度来表示数据多少的图形。条形图可以横置或纵置,纵置时也称为柱状图。此外,条形图有简单条形图、复式条形图等形式。...假设我们拿到了2017年内地电影票房前10的电影的片名和票房数据,如果想直观比较各电影票房数据大小,那么条形图显然是最合适的呈现方式,如代码清单2所示,其可视化结果如图2所示。...在构建直方图时,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。这些值通常被指定为连续的、不重叠的变量间隔,间隔必须相邻,并且通常是相等的大小。...fig = plt.figure() ax1 = fig.add_subplot(2,2,1) #表示4个subplot中的第一个 ax2 = fig.add_subplot(2,2,2) #表示...图9 组合图 利用figure的subplot_adjust方法可以轻易地修改间距,其中wspace和hspace分别用于控制宽度和高度的百分比,可以用作subplot之间的间距。
比较(一)利用python绘制条形图 条形图(Barplot)简介 条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。...自定义条形图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...通过seaborn绘制多样化的条形图 seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot[1]了解更多用法 修改参数 import seaborn as sns import...seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh[2]了解更多用法 修改参数 import matplotlib as mpl import matplotlib.pyplot...=(1.04, 1),loc='upper left') plt.show() 总结 以上通过seaborn的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景
在本演练结束时,将了解如何制作几种不同类型的可视化以及如何操纵绘图的某些美学。可以在此处找到本教程中使用的数据。...由于此信息是从数据框中提取的,因此可以假设所有数据都将保留在其原始索引处,然后数据将正确排列。 plt.plot(rank, score) plt.show() 接下来的两行代码创建了实际的图。...就像制作的第一张图一样,并不知道这张图告诉的是什么。另外不知道哪一行代表传入的x参数。有两种可能的方法来处理这个问题。第一个将添加一个图例来告诉哪个颜色线代表哪个变量。...条形图 在Matplotlib中构建条形图比想象的要困难一些。它可以在几行代码中完成,但了解这段代码的作用非常重要。...第二行获得每个分数发生的次数。此计数将用作条形图的高度。然后第三行获得与每个计数相关联的分数,这需要作为图的x轴。运行时,此代码生成以下条形图: ? 该图给出了与上面创建的直方图略有不同的故事。
图4:函数layout()的例子2 如果在运行上面四幅图形的代码时出现了类似 Error in plot.new() : figure margins too large 这样的错误,可以尝试将 Rstudio...其中图6中展示了简单条形图的绘制,图7中展示了堆砌条形图和分组条形图的绘制。图7中出现了图例与图形重叠的现象,大家可以回顾一下上一次推文中图例设置的内容,调整图例的大小和位置,就可以解决这个问题。...(这个小问题就留给大家区解决了) 从上面这个问题可以看出,只有三个变量的情况下都不可避免的出现了图例和图形重叠的情况,更复杂的情况该怎么办?...同时代码中用到了参数locator(使用这个参数之后,我们可以用鼠标选择图例的位置,避免了有时候无法处理图形和图例位置关系的尴尬)。...最后,为了方便大家学习,本次推文中所有图形的数据都来自R自带或者R中函数包自带,图形及相关代码都可以通过客服小姐姐获得。 本期干货 · !R语言图形day8图形绘制 ! 原文详情:“科研猫”公众号
条形图(bar chart)也称为柱状图,是一种以长方形的长度为变量的统计图表,长方形的长度与它所对应的数值呈一定比例。 一、导入绘图数据 首先导入绘图所需的数据。...四、并列条形图 有时在绘制条形图时需对比显示某些信息,比如想同时观察股票最高价和最低价的变化趋势,可采用并列条形图,具体语句如下: result = date.groupby(date.index.year...五、叠加条形图 有时一个变量的数值恒小于另一个变量,这时可以把两个条形图绘制到一个条形图中,用不同的颜色显示这两个条形图即可。...#显示图例 得到结果如下: ?...#显示图例 得到结果: ?
请注意,对于折线图而言,折线的颜色或对于条形图而言是条形的颜色,并不是从bbc_style()函数中直接获得的,而是需要在其他标准ggplot图表函数中明确设置 。...它本质上修改了ggplot2的主题功能中的某些参数。例如,第一个参数是设置绘图标题元素的字体,大小,字体和颜色。...您可以在调用labs()时将其更改为所需的任何内容。...例如,如果要创建带有很多条形图的条形图,并要确保每个条形图和标签之间有一定的呼吸空间,则可能是这种情况。 如果您确实保留了较大高度图的边距,那么轴和标签之间的间隙可能会更大。...这是我们在处理条形图的边距和高度时应用的指南(已应用coord_flip) size t b 550px 5 10 650px 7 10 750px 10 10 850px 14 10 因此,您需要做的就是将此代码添加到图表中
在进行数据分析时,可视化工作是一个十分重要的环节,数据可视化可以让我们更加直观、清晰的了解数据,Matplotlib 就是一种可视化实现方式。 2....我们在使用中文时可能会现乱码的问题,可以通过如下方式解决: ① 下载 SimHei.ttf,下载地址为:https://download.csdn.net/download/ityard/12248458...site-packages\matplotlib\mpl-data\fonts\ttf 目录下 ② 到 site-packages\matplotlib\mpl-data 目录下找到 matplotlibrc 文件,并修改如下两项即可...2.4 条形图 条形图宽度相同,用高度或长短来表示数据多少,它可以横置或纵置。 2.4.1 纵置 首先,我们来看一下如何绘制纵向条形图,以学生成绩为例,看一下具体实现。...2.4.3 多条 最后,我们来看一下一个学生要同时显示语文和数学两门成绩时,如何通过 Matplotlib 来绘制条形图。
(请确保在使用前已经安装vcd包,使用命令install.packages("vcd")) 简单条形图 若height是一个向量,则它的值就确定了各条形图的高度,并将绘制一幅垂直的条形图。...mean_bar_plot.png 注意:使用title()函数与调用plot()时添加main选项是等价的。 条形图的微调 有若干种方式可以微调条形图的外观。...par()函数能够让你对R的默认图形作出大量修改,这里只给出一个示例: par(mar=c(5, 8, 4, 2)) # 增加y边界大小 par(las=2) # 旋转条形的标签...# 第一个参数locator(1)表示用鼠标点击放置图例的位置;第二个参数是由标签组成的字符向量,第三个参数值使用向量colfill为cyl.f的每一个水平指定一种颜色。...使用并列箱线图进行跨组比较 使用格式: boxplot(formula, data=dataframe) 第一个参数是公式,第二个是数据框或者列表。
领取专属 10元无门槛券
手把手带您无忧上云