首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

IOR中文文档

IOR是一个并行的IO基准,可用于测试使用各种接口和访问模式的并行存储系统的性能。接口和访问模式的并行存储系统的性能。IOR资源库还包括mdtest基准,专门测试不同目录结构下存储系统的元数据峰值速率。在不同目录结构下存储系统的元数据峰值速率。这两个基准都使用一个共同的并行 I/O抽象后端,并依靠MPI进行同步。本文档由两部分组成。用户文档包括安装说明(Install),初学者教程(IOR的第一步),以及关于IOR的运行时选项的信息。开发者文档包括用Doxygen生成的代码文档和一些关于与Travis的连续整合的说明。IOR/mdtest用户和开发者文档的许多方面都是不完整的,我们鼓励贡献者 鼓励贡献者直接评论代码或在此基础上扩展文档。

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CONQUEST 编译安装指南 Slurm 篇

    在实际的生产环境中,使用单用户模式直接运行命令的机会不是很多,通常是采用提交作业任务给集群计算的方式。这样一来既能节约资源和时间,又能申请到更大规模的计算资源,对于平台管理人员还是用户来说都是非常有利的。国家超算中心,地方超算中心,学校超算中心一般都对外提供这样的服务,不过需要按核时进行计费。所谓“核时”就是一个 CPU 核运行一个小时,这也是高性能计算中通常使用的资源衡量单位。作为超算中心或者高性能集群,必不可缺的就是集群作业管理系统,它可以根据用户的需求,统一管理和调度集群的软硬件资源,保证用户作业公平合理地共享集群资源,提高系统利用率和吞吐率。

    01

    python并行计算之mpi4py的安装与基本使用

    在之前的博客中我们介绍过concurrent等python多进程任务的方案,而之所以我们又在考虑MPI等方案来实现python并行计算的原因,其实是将python的计算任务与并行计算的任务调度分层实现。在concurrent和multiprocessing等方案中,我们的python计算任务和调度任务是一体化的,而且还有一个比较大的限制是没办法跨节点操作的,这对于任务与环境的定制化程度要求是比较高的。而MPI的方案在设计初期就考虑到了多节点之间通信的问题,而这种分层式的任务调度解决方案其实在架构上看也更加的合理。做计算的人只要考虑单个进程下的任务如何执行就可以了,至于任务如何并行如何调度,那就是上层的MPI该做的事情了。

    01
    领券